Skip to main content
Log in

Role of geometrical shape in like-charge attraction of DNA

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

While the phenomenon of like-charge attraction of DNA is clearly observed experimentally and in simulations, mean-field theories fail to predict it. Kornyshev et al. argued that like-charge attraction is due to DNA's helical geometry and hydration forces. Strong-coupling (SC) theory shows that attraction of like-charged rods is possible through ion correlations alone at large coupling parameters, usually by multivalent counterions. However for SC theory to be applicable, counterion-counterion correlations perpendicular to the DNA strands need to be sufficiently small, which is not a priori the case for DNA even with trivalent counterions. We study a system containing infinitely long DNA strands and trivalent counterions by computer simulations employing varying degrees of coarse-graining. Our results show that there is always attraction between the strands, but its magnitude is indeed highly dependent on the specific shape of the strand. While discreteness of the charge distribution has little influence on the attractive forces, the role of the helical charge distribution is considerable: charged rods maintain a finite distance in equilibrium, while helices collapse to close contact with a phase shift of π, in full agreement with SC predictions. The SC limit is applicable because counterions strongly bind to the charged sites of the helices, so that helix-counterion interactions dominate over counterion-counterion interactions. Thus DNA's helical geometry is not crucial for like-charge DNA attraction, but strongly enhances it, and electrostatic interactions in the strong-coupling limit are sufficient to explain this attraction.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Trizac, J.-L. Raimbault, Phys. Rev. E 60, 6530 (1999).

    Article  ADS  Google Scholar 

  2. E. Trizac, Phys. Rev. E 62, R1465 (2000).

    Article  ADS  Google Scholar 

  3. J.C. Neu, Phys. Rev. Lett. 82, 1072 (1999).

    Article  ADS  Google Scholar 

  4. J.E. Sader, D.Y. Chan, J. Colloid Interface Sci. 213, 268 (1999).

    Article  Google Scholar 

  5. J. Widom, R.L. Baldwin, J. Mol. Biol. 144, 431 (1980).

    Article  Google Scholar 

  6. R. Podgornik, D. Rau, A. Parsegian, Biophys. J. 66, 962 (1994).

    Article  Google Scholar 

  7. V.A. Bloomfield, Curr. Opin. Struct. Biol. 6, 334 (1996).

    Article  Google Scholar 

  8. L. Guldbrand, B. Jönsson, H. Wennerström, P. Linse, J. Chem. Phys. 80, 2221 (1984).

    Article  ADS  Google Scholar 

  9. N. Grønbech-Jensen, R.J. Mashl, R.F. Bruinsma, W.M. Gelbart, Phys. Rev. Lett. 78, 2477 (1997).

    Article  ADS  Google Scholar 

  10. E. Allahyarov, I. D'Amico, H. Löwen, Phys. Rev. Lett. 81, 1334 (1998).

    Article  ADS  Google Scholar 

  11. M. Deserno, A. Arnold, C. Holm, Macromolecules 36, 249 (2003).

    Article  ADS  Google Scholar 

  12. R. Messina, J. Phys.: Condens. Matter 21, 113102 (2009).

    ADS  Google Scholar 

  13. A.A. Kornyshev, S. Leikin, J. Chem. Phys. 107, 3656 (1997).

    Article  ADS  Google Scholar 

  14. A.G. Cherstvy, J. Phys.: Condens. Matter 17, 1363 (2005).

    ADS  Google Scholar 

  15. A.G. Moreira, R.R. Netz, Europhys. Lett. 52, 705 (2000).

    Article  ADS  Google Scholar 

  16. A.G. Moreira, R.R. Netz, Phys. Rev. Lett. 87, 078301 (2001).

    Article  ADS  Google Scholar 

  17. A.G. Moreira, R.R. Netz, in Electrostatic Effects in Soft Matter and Biophysics Vol. 46 of NATO Science Series II - Mathematics, Physics and Chemistry, edited by C. Holm, P. Kékicheff, R. Podgornik (Kluwer Academic Publishers, Dordrecht, NL, 2001).

  18. A. Naji, A. Arnold, C. Holm, R.R. Netz, Europhys. Lett. 67, 130 (2004).

    Article  ADS  Google Scholar 

  19. M. Kanduč, J. Dobnikar, R. Podgornik, Soft Matter 5, 868 (2009).

    Article  ADS  Google Scholar 

  20. A. Arnold, C. Holm, Eur. Phys. J. E 27, 21 (2008).

    Article  ADS  Google Scholar 

  21. R.R. Netz, Eur. Phys. J. E 5, 557 (2001).

    Article  Google Scholar 

  22. M. Kanduč, A. Naji, R. Podgornik, J. Chem. Phys. 132, 224703 (2010).

    Article  ADS  Google Scholar 

  23. A. Naji, R. Netz, Eur. Phys. J. E 13, 43 (2004).

    Article  Google Scholar 

  24. S. Kesselheim, W. Müller, C. Holm, Phys. Rev. Lett. 112, 018101 (2014).

    Article  ADS  Google Scholar 

  25. A. Arnold, O. Lenz, S. Kesselheim, R. Weeber, F. Fahrenberger, D. Röhm, P. Košovan, C. Holm, in Meshfree Methods for Partial Differential Equations VI, Vol. 89 of Lecture Notes in Computational Science and Engineering, edited by M. Griebel, M.A. Schweitzer (Springer, 2013) pp. 1--23.

  26. H.J. Limbach, A. Arnold, B.A. Mann, C. Holm, Comput. Phys. Commun. 174, 704 (2006).

    Article  ADS  Google Scholar 

  27. A. Arnold, C. Holm, J. Chem. Phys. 123, 144103 (2005).

    Article  ADS  Google Scholar 

  28. J.D. Weeks, D. Chandler, H.C. Andersen, J. Chem. Phys. 54, 5237 (1971).

    Article  ADS  Google Scholar 

  29. D. Frenkel, B. Smit, Understanding Molecular Simulation, second edition (Academic Press, San Diego, 2002).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Kuron.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuron, M., Arnold, A. Role of geometrical shape in like-charge attraction of DNA. Eur. Phys. J. E 38, 20 (2015). https://doi.org/10.1140/epje/i2015-15020-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2015-15020-9

Keywords

Navigation