Skip to main content
Log in

Buckling along boundaries of elastic contrast as a mechanism for early vertebrate morphogenesis

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

We have investigated the mechanism of formation of the body of a typical vertebrate, the chicken. We find that the body forms initially by folding at boundaries of stiffness contrast. These boundaries are dynamic lines, separating domains of different cell sizes, that are advected in a deterministic thin-film visco-elastic flow. While initially roughly circular, the lines of elastic contrast form large “peanut” shapes evoking a slender figure-8 at the moment of formation of the animal body, due to deformation and flow in a quadrupolar stretch caused by mesoderm migration. Folding of these “peanut” or “figure-8” motives along the lines of stiffness contrast creates the global pattern of the animal, and segregates several important territories. The main result is that the pattern of cell texture in the embryo serves simultaneously two seemingly different purposes: it regionalizes territories that will differentiate to different cell types and it also locks the folds that physically segregate these territories. This explains how the different cellular types segregate in physically separated domains.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Darwin, On the origin of Species by means of natural selection of the preservaton of favoured races in the struggle for life (1859)

  2. M. Mallo, C.R. Alonso, Development 140, 3951 (2013)

    Article  Google Scholar 

  3. L. Wolpert, Principles of Development, 3rd edition (Oxford University Press, Oxford, 2007)

  4. J.D. Bénazet, R. Zeller, Cold Spring Harb. Perspect. Biol. 1, a001339 (2009)

    Article  Google Scholar 

  5. G. Forgacs, R.A. Foty, Y. Shafrir, M.S. Steinberg, Biophys. J. 74, 2227 (1998)

    Article  ADS  Google Scholar 

  6. V. Fleury, Eur. Phys. J. Appl. Phys. 45, 30101 (2009)

    Article  Google Scholar 

  7. V. Fleury, Organogenesis 2, 1 (2005)

    Article  Google Scholar 

  8. C. Cui, X. Yang, M. Chuai, J.A. Glazier, C.J. Weijer, Dev. Biol. 284, 37 (2005)

    Article  Google Scholar 

  9. O.P. Boryskina, A. Al-Kilani, V. Fleury, Eur. Phys. J. AP 55, 21101 (2011)

    Article  ADS  Google Scholar 

  10. R. Allena, D. Aubry, Comput. Methods Biomech. Biomed. Engin. 15, 445 (2012)

    Article  Google Scholar 

  11. I. Cheddadi, P. Saramito, B. Dollet, C. Raufaste, F. Graner, Eur. Phys. J. E 34, 1 (2011)

    Article  Google Scholar 

  12. S.A. Sandersius, C.J. Weijer, T.J. Newman, Phys. Biol. 8, 045007 (2011)

    Article  ADS  Google Scholar 

  13. I. Bonnet, P. Marcq, F. Bosveld, L. Fetler, Y. Bellaïche, F. Graner, J. R. Soc. Interface 9, 2614 (2012)

    Article  Google Scholar 

  14. T. Lecuit, P.F. Lenne, Nat. Rev. Mol. Cell Biol. 8, 633 (2007)

    Article  Google Scholar 

  15. V. Conte, F. Ulrich, B. Baum, L. Muñoz, J. Veldhuis, W. Brodland, M. Miodownik, PloS One 7, e34473 (2012)

    Article  ADS  Google Scholar 

  16. B. He, K. Doubrovinski, O. Polyakov, E. Wieschaus, Nature 508, 392 (2014)

    Article  ADS  Google Scholar 

  17. M.A. Wyczalkowski, Z. Chen, B.A. Filas, V.D. Varner, L.A. Taber Birth Defects Res. Part C: Embryo Today: Reviews 961322012

    Article  Google Scholar 

  18. S. Gilbert, Developmental Biology, Chapt. 13, 6th edition (Sunderland, 2000)

  19. A. Romanoff, The Avian Embryo (The Macmillan Company, New York, 1960)

  20. M. Callebaut, E. Van Nueten, H. Bortier, F. Harrisson, J. Morphol. 255, 315 (2003)

    Article  Google Scholar 

  21. V. Fleury, Biosystems, Special issue “Morphogenesis” 109, 460 (2012)

    Google Scholar 

  22. C. Stern (Editor), Gastrulation, From Cell to Embryo (University College, London, 2004)

  23. Z. Kam, J. Minden, D.A. Agard, J.W. Sedat, M. Leptin, Development 112, 365 (1991)

    Google Scholar 

  24. M. Behrndt, G. Salbreux, P. Campinho, R. Hauschild, F. Oswald, J. Roensch, S.W. Grill, C.P. Heisenberg, Science 338, 257 (2012)

    Article  ADS  Google Scholar 

  25. C. Bertet, L. Sulak, T. Lecuit, Nature 429, 667 (2004)

    Article  ADS  Google Scholar 

  26. A.S. Romer, R.S. Parsons, The Vertebrate Body (Saunders College Pub., Philadelphia, 1986)

  27. V. Fleury, Eur. Phys. J. E 34, 73 (2011)

    Article  MathSciNet  Google Scholar 

  28. T. Moran, J. Exp. Biol. 13, 41 (1936)

    Google Scholar 

  29. D.T. New, J. Embryol. Exp. Morph. 3, 326 (1955)

    Google Scholar 

  30. D.F. Kirunda, S.R. McKee, Poult. Sci. 79, 1189 (2000)

    Article  Google Scholar 

  31. E.N. Harvey, G. Fankhauser, J. Cell. Comp. Physiol. 3, 463 (1933)

    Article  Google Scholar 

  32. C. Kemball, Trans. Faraday Soc. 28, 866 (1932)

    Article  Google Scholar 

  33. V. Hamburger, H.L. Hamilton, Dev. Dyn. 195, 231 (1992)

    Article  Google Scholar 

  34. B. Shraiman, Proc. Natl. Acad. Sci. U.S.A. 102, 3318 (2005)

    Article  ADS  Google Scholar 

  35. GEISHA, Gallus Expression In Situ Hybridization data base, http://geisha.arizona.edu/geisha/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Fleury.

Electronic supplementary material

Supplementary material

Supplementary material

Supplementary material

Supplementary material

Supplementary material

Supplementary material

Supplementary material

Supplementary material

Supplementary material

Supplementary material

Supplementary material

Supplementary material

Supplementary material

Supplementary material

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fleury, V., Chevalier, N., Furfaro, F. et al. Buckling along boundaries of elastic contrast as a mechanism for early vertebrate morphogenesis. Eur. Phys. J. E 38, 6 (2015). https://doi.org/10.1140/epje/i2015-15006-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2015-15006-7

Keywords

Navigation