Skip to main content
Log in

Rotational propulsion enabled by inertia

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

The fluid mechanics of small-scale locomotion has recently attracted considerable attention, due to its importance in cell motility and the design of artificial micro-swimmers for biomedical applications. Most studies on the topic consider the ideal limit of zero Reynolds number. In this paper, we investigate a simple propulsion mechanism --an up-down asymmetric dumbbell rotating about its axis of symmetry-- unable to propel in the absence of inertia in a Newtonian fluid. Inertial forces lead to continuous propulsion for all finite values of the Reynolds number. We study computationally its propulsive characteristics as well as analytically in the small-Reynolds-number limit. We also derive the optimal dumbbell geometry. The direction of propulsion enabled by inertia is opposite to that induced by viscoelasticity.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.M. Squires, S.R. Quake, Rev. Mod. Phys. 77, 977 (2005).

    Article  ADS  Google Scholar 

  2. H.A. Stone, A.D. Stroock, A. Ajdari, Annu. Rev. Fluid Mech. 36, 381 (2004).

    Article  ADS  Google Scholar 

  3. A.D. Stroock, S.K.W. Dertinger, A. Ajdari, H.A. Stone, Science 25, 647 (2002).

    Article  ADS  Google Scholar 

  4. E.M. Purcell, Am. J. Phys. 45, 3 (1977).

    Article  ADS  Google Scholar 

  5. E. Lauga, T.R. Powers, Rep. Prog. Phys. 72, 096601 (2009).

    Article  MathSciNet  ADS  Google Scholar 

  6. S.J. Ebbens, J.R. Howse, Soft Matter 6, 726 (2010).

    Article  ADS  Google Scholar 

  7. B.J. Nelson, I.K. Kaliakatsos, J.J. Abbott, Annu. Rev. Biomed. Eng. 12, 55 (2010).

    Article  Google Scholar 

  8. J. Wang, W. Gao, ACS-NANO 6, 5745 (2012).

    Article  Google Scholar 

  9. E. Lauga, Soft Matter 7, 3060 (2009).

    Article  ADS  Google Scholar 

  10. S. Childress, R. Dudley, J. Fluid Mech. 498, 257 (2004).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. N. Vandenberghe, J. Zhang, S. Childress, J. Fluid Mech. 506, 147 (2004).

    Article  MATH  ADS  Google Scholar 

  12. S. Alben, M. Shelley, Proc. Natl. Acad. Sci. U.S.A. 102, 11163 (2005).

    Article  ADS  Google Scholar 

  13. N. Vandenberghe, S. Childress, J. Zhang, Phys. Fluids 18, 014102 (2006).

    Article  MathSciNet  ADS  Google Scholar 

  14. X.Y. Lu, Q. Liao, Phys. Fluids 18, 098104 (2006).

    Article  ADS  Google Scholar 

  15. E. Lauga, Phys. Fluids 19, 061703 (2007).

    Article  ADS  Google Scholar 

  16. D. Gonzalez-Rodriguez, E. Lauga, J. Phys.: Condens. Matter 21, 204103 (2009).

    ADS  Google Scholar 

  17. S.E. Spagnolie, L. Moret, M.J. Shelley, J. Zhang, Phys. Fluids 22, 041903 (2010).

    Article  ADS  Google Scholar 

  18. G.I. Taylor, Proc. R. Soc. London, Ser. A 209, 447 (1951).

    Article  MATH  ADS  Google Scholar 

  19. E.O. Tuck, J. Fluid Mech. 31, 301 (1968).

    Article  ADS  Google Scholar 

  20. C. Brennen, J. Fluid Mech. 65, 799 (1974).

    Article  MATH  ADS  Google Scholar 

  21. A.S. Khair, N.G. Chisholm, Phys. Fluids 26, 011902 (2014).

    Article  ADS  Google Scholar 

  22. R.G. Cox, J. Fluid Mech. 23, 625 (1965).

    Article  ADS  Google Scholar 

  23. O.S. Pak, L. Zhu, L. Brandt, E. Lauga, Phys. Fluids 24, 103102 (2012).

    Article  ADS  Google Scholar 

  24. P. Tierno, R. Golestanian, I. Pagonabarraga, F. Sagués, Phys. Rev. Lett. 101, 218304 (2008).

    Article  ADS  Google Scholar 

  25. P. Tierno, R. Golestanian, I. Pagonabarraga, F. Sagués, J. Phys. Chem. B 112, 16525 (2008).

    Article  Google Scholar 

  26. P. Tierno, O. Guell, F. Sagués, R. Golestanian, I. Pagonabarraga, Phys. Rev. E 81, 011402 (2010).

    Article  ADS  Google Scholar 

  27. L. Zhu, E. Lauga, L. Brandt, Phys. Fluids 24, 051902 (2012).

    Article  ADS  Google Scholar 

  28. A.N. Whitehead, Q. J. Math. 23, 143 (1889).

    Google Scholar 

  29. C.W. Oseen, Arkiv Mat., Astron. och Fysik 6, 29 (1910).

    Google Scholar 

  30. H. Brenner, Hydrodynamic Resistance of Particles at Small Reynolds Numbers, Vol. 6 of Adv. Chem. Eng. (Academic Press, 1966) pp. 287--438.

  31. W.G. Bickley, Philos. Mag. 25, 746 (1938).

    MATH  Google Scholar 

  32. W.D. Collins, Mathematika 2, 42 (1955).

    Article  MATH  MathSciNet  Google Scholar 

  33. M.D.A. Cooley, M.E. O’Neill, Proc. Camb. Philos. Soc. 66, 407 (1969).

    Article  MATH  ADS  Google Scholar 

  34. H. Takagi, J. Phys. Soc. Jpn. 36, 875 (1974).

    Article  ADS  Google Scholar 

  35. S. Kim, S.J. Karrila, Microhydrodynamics (Dover publication, Inc., 2005).

  36. H. Brenner, R.G. Cox, J. Fluid Mech. 17, 561 (1963).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  37. R.G. Cox, H. Brenner, Chem. Eng. Sci. 23, 147 (1968).

    Article  Google Scholar 

  38. B.P. Ho, L.G. Leal, J. Fluid Mech. 65, 365 (1974).

    Article  MATH  ADS  Google Scholar 

  39. M. Stimson, G.B. Jeffery, Proc. R. Soc. London, Ser. A 111, 110 (1926).

    Article  MATH  ADS  Google Scholar 

  40. G.B. Jeffery, Proc. London Math. Soc. 14, 327 (1915).

    Article  Google Scholar 

  41. R.B. Bird, C.F. Curtiss, R.C. Armstrong, O. Hassager, Dynamics of Polymeric Liquids, Vol. 1 (Wiley-Interscience, New York, 1987).

  42. F.A. Morrison, Understanding Rheology (Oxford University Press, New York, 2001). .

  43. S.E. Spagnolie, E. Lauga, Phys. Rev. Lett. 106, 58103 (2011).

    Article  ADS  Google Scholar 

  44. J. Happel, H. Brenner, Low Reynolds number hydrodynamics (Martinus Nijhoff Publishers, The Hague, 1983).

  45. G. von Winckle, Legendre-Gauss Quadrature Weights and Nodes, www.mathwork.com.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Nadal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nadal, F., Pak, O.S., Zhu, L. et al. Rotational propulsion enabled by inertia. Eur. Phys. J. E 37, 60 (2014). https://doi.org/10.1140/epje/i2014-14060-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2014-14060-y

Keywords

Navigation