Skip to main content
Log in

Rheological properties vs. local dynamics in model disordered materials at low temperature

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We study the rheological response at low temperature of a sheared model disordered material as a function of the bond rigidity. We find that the flow curves follow a Herschel-Bulkley law, whatever is the bond rigidity, with an exponent close to 0.5. Interestingly, the apparent viscosity can be related to a single relevant time scale t rel, suggesting a strong connection between the local dynamics and the global mechanical behaviour. We propose a model based on the competition between the nucleation and the avalanche-like propagation of spatial strain heterogeneities. This model can explain the Herschel-Bulkley exponent on the basis of the size dependence of the heterogeneities on the shear rate.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N.P. Bailey, J. Schiøtz, A. Lemaitre, K.W. Jacobsen, Phys. Rev. Lett. 98, 095501 (2007).

    Article  ADS  Google Scholar 

  2. R. Besseling, E.R. Weeks, A.B. Schofield, W.C.K. Poon, Phys. Rev. Lett. 99, 028301 (2007).

    Article  ADS  Google Scholar 

  3. L. Berthier, J.-L. Barrat, J. Chem. Phys. 116, 6228 (2002).

    Article  ADS  Google Scholar 

  4. L. Berthier, J. Phys.: Condens. Matter 15, S933 (2003).

    ADS  Google Scholar 

  5. M. Möbius, G. Katgert, M. van Hecke, EPL 90, 44003 (2010).

    Article  ADS  Google Scholar 

  6. P. Schall, D.A. Weitz, F. Spaepen, Science 318, 1895 (2007).

    Article  ADS  Google Scholar 

  7. T. Gibaud, D. Frelat, S. Manneville, Soft Matter 6, 3482 (2010).

    Article  ADS  Google Scholar 

  8. F. Da Cruz, F. Chevoir, D. Bonn, P. Coussot, Phys. Rev. E 66, 051305 (2002).

    Article  ADS  Google Scholar 

  9. M. Dennin, Phys. Rev. E 70, 041406 (2004).

    Article  ADS  Google Scholar 

  10. T. Majmudar, R. Behringer, Nature 435, 1079 (2005).

    Article  ADS  Google Scholar 

  11. F. Varnik, O. Henrich, Phys. Rev. B 73, 174209 (2006).

    Article  ADS  Google Scholar 

  12. Y. Shi, M.L. Falk, Phys. Rev. Lett. 95, 095502 (2005).

    Article  ADS  Google Scholar 

  13. A. Tanguy, F. Lèonforte, J.-L. Barrat, Eur. Phys. J. E 20, 355 (2006).

    Article  Google Scholar 

  14. M. Tsamados, Eur. Phys. J. E 32, 165 (2010).

    Article  Google Scholar 

  15. C. Fusco, T. Albaret, A. Tanguy, Phys. Rev. E 82, 066116 (2010).

    Article  ADS  Google Scholar 

  16. F. Delogu, Phys. Rev. Lett. 100, 255901 (2008).

    Article  ADS  Google Scholar 

  17. T. Divoux, D. Tamarii, C. Barentin, S. Teitel, S. Manneville, Soft Matter 8, 4151 (2012).

    Article  ADS  Google Scholar 

  18. P. Schall, M. van Hecke, Annu. Rev. Fluid Mech. 42, 67 (2010).

    Article  ADS  Google Scholar 

  19. E.R. Weeks, Statistical Physics of Complex Fluids (Tohoku University Press, Sendai, Japan, 2007) pp. 243--255.

  20. R. Höhler, S.C. Addad, J. Phys.: Condens. Matter 17, 1041 (2005).

    ADS  Google Scholar 

  21. P. Coussot, Soft Matter 3, 528 (2007).

    Article  ADS  Google Scholar 

  22. H.A. Barnes, J.F. Hutton, K. Walters, An introduciton to Rheology (Elsevier, Amsterdam, 1989).

  23. P. Sollich, F. Lequeux, P. Hébraud, M.E. Cates, Phys. Rev. Lett. 78, 2020 (1997).

    Article  ADS  Google Scholar 

  24. M.L. Falk, J.S. Langer, Phys. Rev. E 57, 7192 (1998).

    Article  ADS  Google Scholar 

  25. M.L. Falk, J.S. Langer, Annu. Rev. Condens. Matter Phys. 2, 353 (2011).

    Article  ADS  Google Scholar 

  26. L. Berthier, L. Cugliandolo, J.L. Iguain, Phys. Rev. E 63, 051302 (2001).

    Article  ADS  Google Scholar 

  27. K. Martens, L. Bocquet, J.-L. Barrat, Soft Matter 8, 4197 (2012).

    Article  ADS  Google Scholar 

  28. D. Vandembroucq, S. Roux, Phys. Rev. B 84, 134210 (2011).

    Article  ADS  Google Scholar 

  29. K.A. Dahmen, Y. Ben-Zion, J.T. Uhl, Phys. Rev. Lett. 102, 175501 (2009).

    Article  ADS  Google Scholar 

  30. S.J. Plimpton, J. Comput. Phys. 117, (1995) see also http://lammps.sandia.gov.

  31. D. Rodney, A. Tanguy, D. Vandembroucq, Modelling Simul. Mater. Sci. Eng. 19, 083001 (2011).

    Article  ADS  Google Scholar 

  32. F.H. Stillinger, T.A. Weber, Phys. Rev. B 31, 5262 (1985).

    Article  ADS  Google Scholar 

  33. J.M. Pelletier, B. Van de Moortele, I.R. Lu, Mater Sci. Eng. A 336, 190 (2002).

    Article  Google Scholar 

  34. A. Lemaitre, C. Caroli, Phys. Rev. Lett. 103, 065501 (2009).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Tanguy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fusco, C., Albaret, T. & Tanguy, A. Rheological properties vs. local dynamics in model disordered materials at low temperature. Eur. Phys. J. E 37, 43 (2014). https://doi.org/10.1140/epje/i2014-14043-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2014-14043-0

Keywords

Navigation