Skip to main content
Log in

Improvement of the entanglement generation in atomic states using a single-mode field in the Tavis–Cummings model

  • Regular Article - Quantum Optics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Assuming the interaction of two separable two-level atoms with a single-mode field in the Tavis–Cummings model, we investigate the entanglement generation in the atomic state using the concurrence measure. Specifically, even and odd coherent states are selected as the initial states of the field and the entanglement of the final atomic state is computed and compared with the corresponding one when the ordinary coherent state is the initial field state. It is observed that even and odd coherent states induce more entanglement in the atomic state, so that the Bell states can be obtained by optimizing the parameters. In addition, we observe a direct connection between the non-Gaussianity of field states and the entanglement of atomic states. Also, a mixture of separable and entangled states is generated with the passage of time and the range of entanglement variation decreases.

Graphical abstract

Entanglement generation in Tavis-Cummings model

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The article contains all the information and the data deposit is not necessary.]

References

  1. J. Audretsch, Entangled Systems: New Directions in Quantum Physics (Wiley, Berlin, 2008)

    MATH  Google Scholar 

  2. X.-L. Feng, Z.-M. Zhang, X.-D. Li, S.-Q. Gong, Z.-Z. Xu, Entangling distant atoms by interference of polarized photons. Phys. Rev. Lett. 90, 217902 (2003). https://doi.org/10.1103/PhysRevLett.90.217902

    Article  ADS  Google Scholar 

  3. M. Konopka, V. Buzek, Entangling atoms in photonic crystals. Eur. Phys. J. D 10, 285 (2000). https://doi.org/10.1007/s100530050550

    Article  ADS  Google Scholar 

  4. J. Haegeman, T.J. Osborne, H. Verschelde, F. Verstraete, Entanglement renormalization for quantum fields in real space. Phys. Rev. Lett. 110, 100402 (2013). https://doi.org/10.1103/PhysRevLett.110.100402

    Article  ADS  Google Scholar 

  5. K.J. Ahn, Temporal dynamics of zero-delay second order correlation function and spectral entanglement of two photons emitted from ladder-type atomic three-level systems. Opt. Express. 28, 1790 (2020). https://doi.org/10.1364/OE.382498

    Article  ADS  Google Scholar 

  6. C. Crocker, M. Lichtman, K. Sosnova, A. Carter, S. Scarano, C. Monroe, High purity single photons entangled with an atomic qubit. Opt. Express. 27, 28143 (2019). https://doi.org/10.1364/OE.27.028143

    Article  ADS  Google Scholar 

  7. S.J. Phoenix, P. Knight, Establishment of an entangled atom-field state in the Jaynes-Cummings model. Phys. Rev. A 44, 6023 (1991). https://doi.org/10.1103/PhysRevA.44.6023

    Article  ADS  Google Scholar 

  8. T. van Leent, M. Bock, R. Garthoff, K. Redeker, W. Zhang, T. Bauer, W. Rosenfeld, C. Becher, H. Weinfurter, Long-distance distribution of atom-photon entanglement at telecom wavelength. Phys. Rev. Lett. 124, 010510 (2020). https://doi.org/10.1103/PhysRevLett.124.010510

    Article  Google Scholar 

  9. J. Li, M.-T. Zhou, C.-W. Yang, P.-F. Sun, J.-L. Liu, X.-H. Bao, J.-W. Pan, Semideterministic entanglement between a single photon and an atomic ensemble. Phys. Rev. Lett. 123, 140504 (2019). https://doi.org/10.1103/PhysRevLett.123.140504

    Article  ADS  Google Scholar 

  10. M. Blaha, A. Johnson, A. Rauschenbeutel, J. Volz, Beyond the Tavis–Cummings model: revisiting cavity QED with atomic ensembles. Phys. Rev. A 105, 013719 (2022). https://doi.org/10.1103/PhysRevA.105.013719

    Article  ADS  Google Scholar 

  11. K. Fischer, S. Sun, D. Lukin, Y. Kelaita, R. Trivedi, J. Vuckovic, Pulsed coherent drive in the Jaynes–Cummings model. Phys. Rev. A 98, 021802 (2018). https://doi.org/10.1103/PhysRevA.98.021802

    Article  ADS  Google Scholar 

  12. D. Ran, C.-S. Hu, Z.-B. Yang, Entanglement transfer from two-mode continuous variable SU (2) cat states to discrete qubits systems in Jaynes–Cummings Dimers. Sci. Rep. 6, 32089 (2016). https://doi.org/10.1038/srep32089

    Article  ADS  Google Scholar 

  13. D. Afshar, A. Anbaraki, M. Jafarpour, Entanglement transfer from entangled non-linear coherent states of trapped ions to separable qubits. Opt. Commun. 402, 80 (2017). https://doi.org/10.1016/j.optcom.2017.05.054

    Article  ADS  Google Scholar 

  14. A. Anbaraki, D. Afshar, M. Jafarpour, Entanglement transfer from entangled nonlinear coherent states to separable qubits. J. Opt. Soc. Am. B 34, 1366 (2017). https://doi.org/10.1364/JOSAB.34.001366

    Article  ADS  Google Scholar 

  15. D. Afshar, A. Anbaraki, Nonclassical properties and entanglement of superposition of two-mode separable nonlinear coherent states. J. Opt. Soc. Am. B 33, 558 (2016). https://doi.org/10.1364/JOSAB.33.000558

    Article  ADS  Google Scholar 

  16. E.T. Jaynes, F.W. Cummings, Comparison of quantum and semiclassical radiation theories with application to the beam maser. Proc. IEEE 51, 89 (1963). https://doi.org/10.1109/PROC.1963.1664

    Article  Google Scholar 

  17. A. Anbaraki, D. Afshar, M. Jafarpour, Entangling two separable qubits using an entangled field state. Optik 201, 163539 (2020). https://doi.org/10.1016/j.ijleo.2019.163539

    Article  ADS  Google Scholar 

  18. A. Dehghani, B. Mojaveri, R.J. Bahrbeig, F. Nosrati, R.L. Franco, Entanglement transfer in a noisy cavity network with parity-deformed fields. J. Opt. Soc. Am. B 36, 1858 (2019). https://doi.org/10.1364/JOSAB.36.001858

    Article  ADS  Google Scholar 

  19. M. Bina, F. Casagrande, M. Genoni, A. Lulli, M. Paris, Dynamical description of state mapping and discontinuous entanglement transfer for tripartite systems. Eur. Lett. 90, 30010 (2010). https://doi.org/10.1209/0295-5075/90/30010

    Article  ADS  Google Scholar 

  20. M. Bina, F. Casagrande, A. Lulli, Decoherence in the solvable dynamics of N strongly driven atoms coupled to a cavity mode. Opt. and Spectrosc. 108, 356 (2010). https://doi.org/10.1134/S0030400X10030070

    Article  ADS  Google Scholar 

  21. A. Lulli, M. Bina, M.G. Genoni, Robustness of tripartite entanglement transfer from bosonic modes to localized qubits. Eur. Phys. J. Spec. Top. 203, 25 (2012). https://doi.org/10.1140/epjst/e2012-01533-3

    Article  Google Scholar 

  22. J. Restrepo, B.A. Rodriguez, Dynamics of entanglement and quantum discord in the Tavis–Cimmings model. J. Phys. B: At. Mol. Opt. 49, 125502 (2016). https://doi.org/10.1088/0953-4075/49/12/125502

    Article  ADS  Google Scholar 

  23. T.E. Tessier, I.H. Deutsch, A. Delgado, I. Fuentes-Guridi, Entanglement sharing in the two-atom Tavis–Cummings model. Phys. Rev. A 68, 062316 (2003). https://doi.org/10.1103/PhysRevA.68.062316

    Article  ADS  Google Scholar 

  24. M. Tavis, F.W. Cummings, Exact solution for an N-molecule-radiation-field Hamiltonian. Phys. Rev. 170, 379 (1968). https://doi.org/10.1103/PhysRev.170.379

    Article  ADS  Google Scholar 

  25. M. Tavis, F.W. Cummings, Approximate solutions for an N-molecule-radiation-field Hamiltonian. Phys. Rev. 188, 692 (1969). https://doi.org/10.1103/PhysRev.188.692

    Article  ADS  Google Scholar 

  26. P. Barmettler, D. Fioretto, V. Gritsev, Non-equilibrium dynamics of Gaudin models. EPL 104, 10004 (2013). https://doi.org/10.1209/0295-5075/104/10004

    Article  ADS  Google Scholar 

  27. Z. Chen, Y. Qiu, G.-Q. Zhang, J.-Q. You, Dissipative quantum phase transition in a biased Tavis–Cummings model. Chin. Phys. B 29, 044201 (2020). https://doi.org/10.1088/1674-1056/ab7b55

    Article  ADS  Google Scholar 

  28. C.E.A. Jarvis, D.A. Rodrigues, B.L. Gyorffy, T.P. Spiller, A.J. Short, J.F. Annett, Dynamics of entanglement and ‘attractor’states in the Tavis–Cummings model. New. J. Phys. 11, 103047 (2009). https://doi.org/10.1088/1367-2630/11/10/103047

    Article  ADS  Google Scholar 

  29. J.-L. Guo, H.-S. Song, Dynamics of pairwise entanglement between two Tavis–Cummings atoms. J. Phys. A: Math. Theor. 41, 085302 (2008). https://doi.org/10.1088/1751-8113/41/8/085302

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. M. Fasihi, B. Mojaveri, Entanglement protection in Jaynes–Cummings model. Quantum. Inf. Process. 18, 1 (2019). https://doi.org/10.1007/s11128-019-2195-8

    Article  MATH  Google Scholar 

  31. E. Boukobza, D. Tannor, Entropy exchange and entanglement in the Jaynes–Cummings model. Phys. Rev. A 71, 063821 (2005). https://doi.org/10.1103/PhysRevA.71.063821

    Article  ADS  Google Scholar 

  32. B.W. Shore, P.L. Knight, The Jaynes–Cummings model. J. Mod. Opt. 40, 1195 (1993). https://doi.org/10.1080/09500349314551321

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. S. Ghoreishi, M. Sarbishaei, K. Javidan, Entanglement between two Tavis–Cummings systems with N= 2. Int. J. Theor. Math. Phys. 2, 187 (2012). https://doi.org/10.5923/j.ijtmp.20120206.03

    Article  Google Scholar 

  34. M.O. Guslyannikova, E.K. Bashkirov, Atom–atom entanglement in a nonresonant two-photon Tavis–Cummings model. Bull. Russ. Acad. Sci. Phys. 84, 281 (2020). https://doi.org/10.3103/S1062873820030107

    Article  Google Scholar 

  35. J.M. Torres, J.Z. Bernad, G. Alber, Quantum teleportation and entanglement swapping of matter qubits with multiphoton signals. Phys. Rev. A. 90, 012304 (2014). https://doi.org/10.1103/PhysRevA.90.012304

    Article  ADS  Google Scholar 

  36. C. Gerry, P. Knight, P.L. Knight, Introductory Quantum Optics (Cambridge University Press, Cambridge, 2005)

    Google Scholar 

  37. V. Dodonov, I. Malkin, V. Man’Ko, Even and odd coherent states and excitations of a singular oscillator. Physica. 72, 597 (1974). https://doi.org/10.1016/0031-8914(74)90215-8

    Article  ADS  MathSciNet  Google Scholar 

  38. L. Huang, Q. Guo, L.-Y. Jiang, G. Chen, X.-X. Xu, W. Yuan, M times photon subtraction-addition coherent superposition operated odd-Schrödinger-cat state: nonclassicality and decoherence. Int. J. Theor. Phys. 54, 2952 (2015). https://doi.org/10.1007/s10773-015-2534-1

    Article  MATH  Google Scholar 

  39. S.A. Hill, W.K. Wootters, Entanglement of a pair of quantum bits. Phys. Rev. Lett. 78, 5022 (1997). https://doi.org/10.1103/PhysRevLett.78.5022

    Article  ADS  Google Scholar 

  40. M.G. Genoni, M.G. Paris, K. Banaszek, Measure of the non-Gaussian character of a quantum state. Phys. Rev. A 76, 042327 (2007). https://doi.org/10.1103/PhysRevA.76.042327

    Article  ADS  Google Scholar 

  41. F. Casagrande, A. Lulli, M.G. Paris, Improving the entanglement transfer from continuous-variable systems to localized qubits using non-Gaussian states. Phys. Rev. A 75, 032336 (2007). https://doi.org/10.1103/PhysRevA.75.032336

    Article  ADS  Google Scholar 

  42. P. Chang, B. Shao, G.L. Long, Entanglement transfer from photon-subtracted and photon-added two-mode squeezed fields to a pair of qubits. Phys. Lett. A 372, 7124 (2008). https://doi.org/10.1016/j.physleta.2008.10.073

    Article  ADS  MATH  Google Scholar 

  43. R. Gilmore, Backer-Campbell-Hausdorff formulas. J. Math. Phys. 15, 2090 (1974). https://doi.org/10.1063/1.1666587

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgements

D. Afshar is supported by Shahid Chamran University of Ahvaz through the grant No. SCU.SP1401.812.

Funding

Shahid Chamran University of Ahvaz, SCU.SP1401.812, Davood Afshar.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the work.

Corresponding author

Correspondence to Davood Afshar.

Ethics declarations

Conflict of interest

The authors report that they have no competing interests.

Appendix A: Calculation of the coefficients of the atom–field state in the Tavis–Cummings model

Appendix A: Calculation of the coefficients of the atom–field state in the Tavis–Cummings model

Using (2)—(5), the atom–field state at time t is given by:

$$ \left| {\Psi_{a - f} (t)} \right\rangle = e^{{ - i\,\,\left( {\hat{H}_{1} + \hat{H}_{2} } \right)\,\,t}} \left| {\Psi_{a} (0)} \right\rangle \left| {\Psi_{f} (0)} \right\rangle $$
(A.1)

where \(\hat{H}_{1}\) and \(\hat{H}_{2}\) are as follows:

$$ \hat{H}_{1} = \hbar \left( {\omega \hat{a}^{\dag } \hat{a} + \frac{{\omega_{a} }}{2}\sum\limits_{i = A,B} {\hat{\sigma }_{i}^{z} } } \right) $$
(A.2)
$$ \hat{H}_{2} = \hbar \left( {g\sum\limits_{i = A,B} {\left( {e^{i\theta } \hat{\sigma }_{i}^{ + } \hat{a} + e^{ - i\theta } \hat{\sigma }_{i}^{ - } \hat{a}^{\dag } } \right)} } \right) $$
(A.3)

With the use of Backer-Campbell-Hausdorff lemma, the commutator of \(\hat{H}_{1}\) and \(\hat{H}_{2}\) is [43]:

$$ \left[ {\hat{H}_{1} ,\hat{H}_{2} } \right] = \left( {\omega - \omega_{a} } \right)g\left( { - e^{i\theta } \sum\limits_{i = A,B} {\hat{\sigma }_{i}^{ + } \hat{a} + e^{ - i\theta } \,\sum\limits_{i = A,B} {\hat{\sigma }_{i}^{ - } } \hat{a}^{\dag } } } \right) $$
(A.4)

Assuming the resonance of the atomic and field frequencies \(\left( {\omega = \omega_{a} } \right),\) the commutator in (A.4) vanishes. Thus, (A.1) can be written as:

$$ \left| {\Psi_{a - f} (t)} \right\rangle \, = \hat{U}_{1} \left( t \right)\hat{U}_{2} \left( t \right)\left| {\Psi_{a} (0)} \right\rangle \left| {\Psi_{f} (0)} \right\rangle $$
(A.5)

where \(\hat{U}_{1} \left( t \right)\) and \(\hat{U}_{2} \left( t \right)\) are given by:

$$ \begin{gathered} \hat{U}_{1} \left( t \right) = \exp \left[ { - i\frac{{\hat{H}_{1} t}}{\hbar }} \right] \hfill \\ \,\,\,\,\,\,\,\,\,\,\,\,\,\, = \left( {\begin{array}{*{20}c} {e^{{ - i\omega \,t\left( {\,\hat{a}^{\dag } \hat{a}\, + 1} \right)}} } & 0 & 0 & 0 \\ 0 & {e^{{ - it\omega \,\hat{a}^{\dag } \hat{a}}} } & 0 & 0 \\ 0 & 0 & {e^{{ - it\omega \,\hat{a}^{\dag } \hat{a}}} } & 0 \\ 0 & 0 & 0 & {e^{{ - i\omega \,t\left( {\,\hat{a}^{\dag } \hat{a} - 1} \right)}} } \\ \end{array} } \right) \hfill \\ \end{gathered} $$
(A.6)
$$ \hat{U}_{2} \left( t \right) = \exp \left[ { - i\frac{{\hat{H}_{2} t}}{\hbar }} \right] = \hat{U}_{2A} \otimes \hat{U}_{2B} $$
(A.7)

In the writing of the matrix (A.6), the orthonormal set \(\left\{ {\left| {00} \right\rangle ,\;\left| {01} \right\rangle ,\;\left| {10} \right\rangle ,\;{\text{and}}\;\left| {11} \right\rangle } \right\}\), has been used. With the assumption of the similarities of the two atoms A and B, \(\hat{U}_{2A}\) and \(\hat{U}_{2B}\) are given by:

$$ \begin{gathered} \hat{U}_{2A} = \hat{U}_{2B} = e^{{ - ig\,t\left( {e^{i\theta } \hat{\sigma }_{i}^{ + } \hat{a} + e^{ - i\theta } \hat{\sigma }_{i}^{ - } \hat{a}^{\dag } } \right)}} \hfill \\ \,\,\,\,\,\,\,\,\,\, = \left( {\begin{array}{*{20}c} {\cos \left( {gt\sqrt {\hat{a}^{\dag } \hat{a}} } \right)} & {\frac{{ - ie^{ - i\theta } \hat{a}^{\dag } }}{{\sqrt {\hat{a}\hat{a}^{\dag } } }}\sin \left( {gt\sqrt {\hat{a}\hat{a}^{\dag } } } \right)} \\ {\frac{{ - ie^{i\theta } }}{{\sqrt {\hat{a}\hat{a}^{\dag } } }}\sin \left( {gt\sqrt {\hat{a}\hat{a}^{\dag } } } \right)\hat{a}} & {\cos \left( {gt\sqrt {\hat{a}\hat{a}^{\dag } } } \right)} \\ \end{array} } \right) \hfill \\ \end{gathered} $$
(A.8)

Now, assuming initial atomic state as \(\left| {00} \right\rangle\) and using (A.5) – (A.8), we have

$$ \begin{aligned} & \left| {\Psi_{a - f} (t)} \right\rangle\\ & = \,\left( {\begin{array}{*{20}c} {e^{{ - i\left( {\hat{a}^{\dag } \hat{a} + 1} \right)\omega \,t}} \cos^{2} \left( {gt\sqrt {\hat{a}^{\dag } \hat{a}} } \right)} \\ { - ie^{i\theta } e^{{ - i\omega t\hat{a}^{\dag } \hat{a}}} \cos \left( {gt\sqrt {\hat{a}^{\dag } \hat{a}} } \right)\frac{1}{{\sqrt {\hat{a}\hat{a}^{\dag } } }}\sin \left( {gt\sqrt {\hat{a}\hat{a}^{\dag } } } \right)\hat{a}} \\ { - ie^{i\theta } e^{{ - i\omega t\hat{a}^{\dag } \hat{a}}} \frac{1}{{\sqrt {\hat{a}\hat{a}^{\dag } } }}\sin \left( {gt\sqrt {\hat{a}\hat{a}^{\dag } } } \right)\hat{a}\,\cos \left( {gt\sqrt {\hat{a}^{\dag } \hat{a}} } \right)} \\ { - e^{2i\theta } e^{{ - i\left( {\hat{a}^{\dag } \hat{a} - 1} \right)\omega \,t}} \left( {\frac{1}{{\sqrt {\hat{a}\hat{a}^{\dag } } }}\sin \left( {gt\sqrt {\hat{a}\hat{a}^{\dag } } } \right)\hat{a}} \right)^{2} } \\ \end{array} } \right)\left| {\Psi_{f} \left( 0 \right)} \right\rangle \end{aligned}$$
(A.9)

By substituting \(\left| {\Psi_{f} \left( 0 \right)} \right\rangle = \sum\limits_{n}^{{}} {g_{n} \left| n \right\rangle }\) in the above equation, the atom–field state is:

$$ \left| {\Psi_{a - f} (t)} \right\rangle = \,\sum\limits_{n = 0}^{\infty } {\left( {a_{n} \left| {00} \right\rangle + b_{n} \left| {01} \right\rangle + c_{n} \left| {10} \right\rangle + {\text{d}}_{n} \left| {11} \right\rangle } \right)\left| n \right\rangle } $$
(A.10)

where \(a_{n} ,\;b_{n} ,\;c_{n} \;{\text{and}}\;d_{n}\) are given by:

$$ \begin{gathered} a_{n} = g_{n} \,e^{{ - i\left( {n + 1} \right)\omega \,t}} \cos^{2} \left( {gt\sqrt n } \right) \hfill \\ b_{n} = - ie^{i\theta } g_{n + 1} \,e^{ - in\omega t} \cos \left( {gt\sqrt n } \right)\sin \left( {gt\sqrt {n + 1} } \right) \hfill \\ c_{n} = - ie^{i\theta } g_{n + 1} e^{ - in\omega t} \sin \left( {gt\sqrt {n + 1} } \right)\cos \left( {gt\sqrt {n + 1} } \right) \hfill \\ d_{n} = - e^{2i\theta } g_{n + 2} e^{{ - i\left( {n - 1} \right)\omega \,t}} \sin \left( {gt\sqrt {n + 1} } \right)\sin \left( {gt\sqrt {n + 2} } \right) \hfill \\ \end{gathered} $$
(A.11)

Assuming \(\left| {\Psi_{f} \left( 0 \right)} \right\rangle\) is in the coherent, even coherent and odd coherent states, the coefficients, \(g_{n}\), are, respectively, given by:

$$ g_{n} = e^{{ - \,\,\frac{{\left| \alpha \right|^{2} }}{2}}} \frac{{\alpha^{n} }}{{\sqrt {n!} }} $$
(A.12)
$$ g_{n} = N_{e} \left( {1 + \left( { - 1} \right)^{n} } \right)e^{{ - \,\,\frac{{\left| \alpha \right|^{2} }}{2}}} \frac{{\alpha^{n} }}{{\sqrt {n!} }} $$
(A.13)
$$ g_{n} = N_{o} \left( {1 - \left( { - 1} \right)^{n} } \right)e^{{ - \,\,\frac{{\left| \alpha \right|^{2} }}{2}}} \frac{{\alpha^{n} }}{{\sqrt {n!} }} $$
(A.14)

where \(N_{e}\) and \(N_{o}\) have been given in (10). By substituting the above equations in (A.11), (7) and (9) are obtained.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Movahedi, R., Afshar, D. & Jafarpour, M. Improvement of the entanglement generation in atomic states using a single-mode field in the Tavis–Cummings model. Eur. Phys. J. D 77, 59 (2023). https://doi.org/10.1140/epjd/s10053-023-00647-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-023-00647-z

Navigation