Skip to main content
Log in

Entanglement and Pancharatnam Phase of a Four-Level Atom in Coherent States Within Generalized Heisenberg Algebra

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

We consider a four-level atom (FLA) interacting with a field mode that is initially in a coherent state associated with a generalized Heisenberg algebra (CSGHA). The dynamical behavior of quantum entropy, the Pancharatnam phase, and the Mandel parameter are investigated. The statistical and nonclassical properties of the field in regard to its CSGHA are discussed through the evolution of the Mandel parameter, and the effects of the initial atomic state position and time-dependent coupling given in terms of atomic speed and acceleration are examined. The results show that the CSGHA strength and time-dependent coupling based on the atomic speed and acceleration have the potential to affect the time evolution of the entanglement, the Pancharatnam phase, and the Mandel parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Schrödinger, Naturwissenschaften, 14, 664 (1926).

    Article  ADS  Google Scholar 

  2. R. J. Glauber, Phys. Rev., 131, 2766 (1963).

    Article  ADS  MathSciNet  Google Scholar 

  3. B. Jurco, Lett. Math. Phys., 21, 51 (1991).

    Article  ADS  MathSciNet  Google Scholar 

  4. V. V. Dodonov, J. Opt. B: Quantum Semiclass. Opt., 4, R1 (2002).

    Article  ADS  Google Scholar 

  5. D. Ellinas, “On coherent states and q-deformed algebras, arXiv hepth/9309072 (1993).

  6. S. Chaturvedi, A. K. Kappoor, R. Sandhya, and V. Srinivasan, Phys. Rev. A, 43, 4555 (1991).

    Article  ADS  MathSciNet  Google Scholar 

  7. S. H. Chiu, R. W. Gray, and C. A. Nelson, Phys. Lett. A, 164, 237 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  8. M. C. Teich and B. E. A. Salch, J. Opt. Soc. Am. B, 2, 275 (1985).

    Article  ADS  Google Scholar 

  9. H. J. Kimble, M. Dagenais, and L. Mandel, Phys. Rev. Lett., 39, 691 (1977).

    Article  ADS  Google Scholar 

  10. C. K. Hong and L. Mandel, Phys. Rev. Lett., 54, 323 (1985).

    Article  ADS  Google Scholar 

  11. L. A. Wu, H. J. Kimble, J. L. Hall, and H. Wu, Phys. Rev. Lett., 57, 2520 (1985).

    Article  ADS  Google Scholar 

  12. R. Short and L. Mandel, Phys. Rev. Lett., 51, 384 (1983).

    Article  ADS  Google Scholar 

  13. J. Perina, Z. Hradil, and B. Jurco, Quantum Optics and Fundamentals of Physics, Kluwer Academic Publishers, Dordrechet (1994).

    Book  MATH  Google Scholar 

  14. V. I. Man’ko, G. Marmo, E. C. G. Sudarshan, and F. Zaccaria, Phys. Scr., 55, 528 (1997).

    Article  ADS  Google Scholar 

  15. R. Lopez-Peña, V. I. Man’ko, G. Marmo, et al., J. Russ. Laser Res., 21, 305 (2000).

    Article  Google Scholar 

  16. A. Kay, Phys. Rev. A, 92, 062329 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  17. E. A. Sete, A. A. Svidzinsky, H. Eleuch, et al., J. Mod. Opt., 57, 1311 (2010).

    Article  ADS  Google Scholar 

  18. K. Berrada, S. Abdel-Khalek, and A. Eid, J. Russ. Laser Res., 37, 45 (2016).

    Article  Google Scholar 

  19. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press (2000).

  20. S. M. Tan, D. F. Walls, and M. J. Collett, Phys. Rev. Lett., 66, 252 (1991).

    Article  ADS  Google Scholar 

  21. G. Toth, C. Simon, and J. I. Cirac, Phys. Rev. A, 68, 062310 (2003).

    Article  ADS  Google Scholar 

  22. K. Berrada, S. Abdel-Khalek, H. Eleuch, and Y. Hassouni, Quantum Inform. Process., 12, 69 (2013).

    Article  ADS  Google Scholar 

  23. T. P. Purdy, P.-L. Yu, R. W. Peterson, et al., Phys. Rev. X, 3, 031012 (2013).

    Google Scholar 

  24. E. A. Sete, H. Eleuch, and C. H. R. Ooi, J. Opt. Soc. Am. B, 31, 2821 (2014).

    Article  ADS  Google Scholar 

  25. N. Gershenfeld and I. L. Chuang, Science, 275, 350 (1997).

    Article  MathSciNet  Google Scholar 

  26. M. V. Berry, Proc. R. Soc. London A, 329, 45 (1984).

    Article  ADS  Google Scholar 

  27. S. Pancharatnam, Proc. Indian Acad. Sci. A, 44, 247 (1956).

    MathSciNet  Google Scholar 

  28. F. Wilczek and A. Zee, Phys. Rev. Lett., 52, 2111 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  29. B. Simon, Phys. Rev. Lett., 51, 2167 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  30. P. Facchi and S. Pascazio, Acta Phys. Slovaca, 49, 677 (1999).

    Google Scholar 

  31. E. Edfawy and S. Abdel-Khalek, J. Russ. Laser Res., 37, 345 (2016).

    Article  Google Scholar 

  32. M. S. Abdalla, A. S. F. Obada, and S. Abdel-Khalek, Eur. Phys. J. Plus, 128, 1 (2013).

    Article  Google Scholar 

  33. S. Abdel-Khalek, Open Syst. Inform. Dyn., 22, 1550015 (2015).

    Article  ADS  Google Scholar 

  34. Y. Hassouni, E. M. F. Curado, and M. A. Rego-Monteiro, Phys. Rev. A, 71, 022104 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  35. L. Mandel, Opt. Lett., 4, 205 (1979).

    Article  ADS  Google Scholar 

  36. K. Berrada, S. Abdel-Khalek, and A. Eid, J. Russ. Laser Res., 37, 45 (2016).

    Article  Google Scholar 

  37. J. von Neumann, Mathematical Foundations of Quantum Mechanics, Princeton University Press (1955)

  38. S. J. Phoenix, and P. L. Knight, Ann. Phys. (N.Y.), 186, 381 (1988).

    Article  ADS  Google Scholar 

  39. S. Abdel-Khalek and N. H. Abdel-Wahab, Int. J. Theor. Phys, 50, 562 (2011).

    Article  Google Scholar 

  40. Q. V. Lawande, S. V. Lawande, and A. Joshi, Phys. Lett. A, 251, 164 (1999).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Abdel-Khalek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alqannas, H.S., Abdel-Khalek, S. Entanglement and Pancharatnam Phase of a Four-Level Atom in Coherent States Within Generalized Heisenberg Algebra. J Russ Laser Res 38, 134–140 (2017). https://doi.org/10.1007/s10946-017-9627-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-017-9627-7

Keywords

Navigation