Skip to main content
Log in

Absolute fully entangled fraction from spectrum

  • Regular Article – Quantum Information
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Fully entangled fraction (FEF) is a significant figure of merit for density matrices. In bipartite \( d \otimes d \) quantum systems, the threshold value FEF \( > 1/d \), carries significant implications for quantum information processing tasks. Like separability, the value of FEF is also related to the choice of global basis of the underlying Hilbert space. A state having its FEF \( \le 1/d \), might give a value \( > 1/d \) in another global basis. A change in the global basis corresponds to a global unitary action on the quantum state. In the present work, we find that there are quantum states whose FEF remains less than 1/d, under the action of any global unitary, i.e., any choice of global basis. We invoke the hyperplane separation theorem to demarcate the set from states whose FEF can be increased beyond 1/d through global unitary action. Consequent to this, we probe the marginals of a pure three party system in qubits. We observe that under some restrictions on the parameters, even if two parties collaborate (through unitary action on their combined system) they will not be able to breach the FEF threshold. The study is further extended to include some classes of mixed three qubit and three qutrit systems. Furthermore, the implications of our work pertaining to k-copy nonlocality and teleportation are also investigated.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: Data sharing is not applicable to this article as no datasets were generated or analysed during the current study.]

References

  1. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000)

    MATH  Google Scholar 

  2. R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. C.H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W.K. Wootters, Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. M. Zukowski, A. Zeilinger, M.A. Horne, A.K. Ekert, “Event-ready-detectors’’ Bell experiment via entanglement swapping. Phys. Rev. Lett. 71, 4287 (1993)

    Article  ADS  Google Scholar 

  5. C.H. Bennett, S.J. Wiesner, Communication via one-and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. N. Gisin, G. Ribordy, W. Tittel, H. Zbinden, Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002)

    Article  ADS  MATH  Google Scholar 

  7. A. Datta, A. Shaji, C.M. Caves, Quantum discord and the power of one qubit. Phys. Rev. Lett. 100, 050502 (2008)

    Article  ADS  Google Scholar 

  8. H. Ollivier, W.H. Zurek, Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  MATH  Google Scholar 

  9. L. Henderson, V. Vedral, Classical, quantum and total correlations. J. Phys. A: Math. Gen. 34, 6899 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. K. Modi, T. Paterek, W. Son, V. Vedral, M. Williamson, Unified view of quantum and classical correlations. Phys. Rev. Lett. 104, 080501 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  11. I. Chakrabarty, P. Agrawal, A.K. Pati, Quantum dissension: generalizing quantum discord for three-qubit states. Eur. Phys. J. D 65, 605 (2011)

    Article  ADS  Google Scholar 

  12. S.K. Sazim, P. Agrawal, Quantum mutual information and quantumness vectors for multi-qubit systems, arXiv:1607.05155

  13. E. Knill, http://qig.itp.uni-hannover.de/qiproblems/15 (2003)

  14. R.B. Holmes, Geometric Functional Analysis and Its Applications (Springer, New York, 1975)

    Book  MATH  Google Scholar 

  15. K. Życzkowski, P. Horodecki, A. Sanpera, M. Lewenstein, Volume of the set of separable states. Phys. Rev. A 58, 883 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  16. M. Kuś, K. Życzkowski, Geometry of entangled states. Phys. Rev. A 63, 032307 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  17. S.L. Braunstein, C.M. Caves, R. Jozsa, N. Linden, S. Popescu, R. Schack, Separability of very noisy mixed states and implications for NMR quantum computing. Phys. Rev. Lett. 83, 1054 (1999)

    Article  ADS  Google Scholar 

  18. F. Verstraete, K. Audenaert, B. De Moor, Maximally entangled mixed states of two qubits. Phys. Rev. A 64, 012316 (2001)

    Article  ADS  Google Scholar 

  19. N. Johnston, Separability from spectrum for qubit–qudit states. Phys. Rev. A 88, 062330 (2013)

    Article  ADS  Google Scholar 

  20. S. Arunachalam, N. Johnston, V. Russo, Is absolute separability determined by the partial transpose? Quantum Inf. Comput. 15, 694 (2015)

    MathSciNet  Google Scholar 

  21. M.J. Kastoryano, F. Reiter, A.S. Sørensen, Dissipative preparation of entanglement in optical cavities. Phys. Rev. Lett. 106, 090502 (2011)

    Article  ADS  Google Scholar 

  22. N. Ganguly, J. Chatterjee, A.S. Majumdar, Witness of mixed separable states useful for entanglement creation. Phys. Rev. A 89, 052304 (2014)

    Article  ADS  Google Scholar 

  23. S. Halder, S. Mal, A. Sen, Characterizing the boundary of the set of absolutely separable states and their generation via noisy environments. Phys. Rev. A 103, 052431 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  24. A. Patra, S. Mal, A.S. De, Efficient nonlinear witnessing of non-absolutely separable states with lossy detectors. Phys. Rev. A 104, 032427 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  25. F. Verstraete, M.M. Wolf, Entanglement versus bell violations and their behavior under local filtering operations. Phys. Rev. Lett. 89, 170401 (2002)

    Article  ADS  Google Scholar 

  26. N. Ganguly et al., Bell-CHSH violation under global unitary operations: necessary and sufficient conditions. Int. J. Quantum Inf. 16, 1850040 (2018)

    Article  MATH  Google Scholar 

  27. S. Patro, I. Chakrabarty, N. Ganguly, Non-negativity of conditional von Neumann entropy and global unitary operations. Phys. Rev. A 96, 062102 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  28. M. Vempati, N. Ganguly, I. Chakrabarty, A.K. Pati, Witnessing negative conditional entropy. Phys. Rev. A 104, 012417 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  29. M. Vempati, S. Shah, N. Ganguly, I. Chakrabarty, A-unital operations and quantum conditional entropy. Quantum 6, 641 (2022)

    Article  Google Scholar 

  30. M. Horodecki, P. Horodecki, R. Horodecki, General teleportation channel, singlet fraction, and quasidistillation. Phys. Rev. A 60, 1888 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. M.J. Zhao, Maximally entangled states and fully entangled fraction. Phys. Rev. A 91, 012310 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  32. M.J. Zhao, Z.G. Li, S.M. Fei, Z.X. Wang, A note on fully entangled fraction. J. Phys. A: Math. Theor. 43, 275203 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. M. Li, S.M. Fei, Z.X. Wang, Upper bound of the fully entangled fraction. Phys. Rev. A 78, 032332 (2008)

    Article  ADS  Google Scholar 

  34. J. Grondalski, D.M. Etlinger, D.F.V. James, The fully entangled fraction as an inclusive measure of entanglement applications. Phys. Lett. A 300, 573 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Gu. Rui-Juan, Li. Ming, Fei Shao-Ming, Li.-jost Xian-Qing, On estimation of fully entangled fraction. Commun. Theor. Phys. 53, 265 (2010)

    Article  ADS  MATH  Google Scholar 

  36. X.F. Huang, N.H. Jing, T.G. Zhang, An upper bound of fully entangled fraction of mixed states. Commun. Theor. Phys. 65, 701 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. N. Ganguly, S. Adhikari, A.S. Majumdar, J. Chatterjee, Entanglement witness operator for quantum teleportation. Phys. Rev. Lett. 107, 270501 (2011)

    Article  Google Scholar 

  38. R. Horodecki, P. Horodecki, M. Horodecki, Violating bell inequality by mixed spin-1/2 states: necessary and sufficient condition. Phys. Lett. A 200, 340 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. J.Y. Li, X.X. Fang, T. Zhang, G.N.M. Tabia, H. Lu, Y.C. Liang, Activating hidden teleportation power: theory and experiment. Phys. Rev. Res. 3, 023045 (2021)

    Article  Google Scholar 

  40. R.F. Werner, Quantum states with Einstein–Podolsky–Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277 (1989)

    Article  ADS  MATH  Google Scholar 

  41. G.F. Simmons, Introduction to Topology and Modern Analysis (McGraw-Hill, New York, 1963)

    MATH  Google Scholar 

  42. O. Gühne, P. Hyllus, D. Bruß, A. Ekert, M. Lewenstein, C. Macchiavello, A. Sanpera, Detection of entanglement with few local measurements. Phys. Rev. A 66, 062305 (2002)

    Article  ADS  MATH  Google Scholar 

  43. R.A. Bertlmann, P. Krammer, Bloch vectors for qudits. J. Phys. A: Math. Theor. 41, 235303 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. D. Cavalcanti, A. Acin, N. Brunner, T. Vertesi, All quantum states useful for teleportation are nonlocal resources. Phys. Rev. A 87, 042104 (2013)

    Article  ADS  Google Scholar 

  45. A. Acin, A. Andrianov, L. Costa, E. Jane, J.I. Latorre, R. Tarrrach, Generalized Schmidt decomposition and classification of three-quantum-bit states. Phys. Rev. Lett. 85, 1560 (2000)

    Article  ADS  Google Scholar 

  46. A. Gabriel, B.C. Hiesmayr, M. Huber, Criterion for K-separability in mixed multipartite systems. Quantum Inf. Comput. 10, 829 (2010)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Tapaswini Patro would like to acknowledge the support from DST-Inspire fellowship No. DST/INSPIRE Fellowship/2019/IF190357. M.A.S. acknowledges the National Key R &D Program of China, Grant No. 2018YFA0306703.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the paper.

Corresponding author

Correspondence to Tapaswini Patro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patro, T., Mukherjee, K., Siddiqui, M.A. et al. Absolute fully entangled fraction from spectrum. Eur. Phys. J. D 76, 127 (2022). https://doi.org/10.1140/epjd/s10053-022-00458-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-022-00458-8

Navigation