Skip to main content
Log in

K-shell ionization of 25–100 keV Nq+ (q = 3, 5) ions impinging on Al and Cu surfaces

  • Regular Article – Atomic and Molecular Collisions
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

In this paper, K-shell X-ray spectra of nitrogen are measured by the interaction of Nq+ (q = 3, 5) ions with Al and Cu surfaces in the impact energy range of 25–100 keV. K-shell X-ray yields per incident ion and then ionization cross sections are deduced from the measured K-X-ray spectra. It is found that both the yields and cross sections increase quickly with increasing impact energy, but have no apparent dependence on the target material and the charge state of the incident ion. The experimental results reveal that the incident Nq+ (q = 3, 5) ions have been neutralized and achieved a charge-state equilibration before the K-shell electron is ionized. The experimental ionization cross sections are compared with those from the plane wave Born approximation (PWBA) and the classical binary encounter approximation (BEA) theory. The BEA calculations are better consistent with the experimental data than the PWBA. It means that the K-shell ionization of the incident Nq+ (q = 3, 5) ions is due to the direct Coulomb excitation processes that occurred below the target surface.

Graphic abstract

K-shell ionization cross sections of Nq+ ions incident on an Al target. The theoretical calculations of BEA and PWBA models are also shown for comparison

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All data needed to evaluate the conclusions in this work are present in the paper. Additional raw data are available from the corresponding authors upon reasonable request.]

References

  1. T. Schenkel, A.V. Hamza, A.V. Barnes, D.H. Schneider, Prog. Surf. Sci. 61, 23 (1999)

    Article  ADS  Google Scholar 

  2. A. Arnau, F. Aumayr, P.M. Echenique, M. Grether, W. Heiland, J. Limburg, R. Morgenstern, P. Roncin, S. Schippers, R. Schuch, N. Stolterfoht, P. Varga, T.J.M. Zouros, H. Winter, Surf. Sci. Rep. 27, 113 (1997)

    Article  ADS  Google Scholar 

  3. Majkić M D, Nedeljković N N 2021 Vacuum 190 110301

  4. Nedeljković N N, Majkić M D, Božanić D K, Dojčilović R J 2016 J. Phys. B: At. Mol. Opt. Phys. 49 125201

  5. Song Z Y, Yang Z H, Zhang H Q, Shao J X, Cui Y, Zhang Y P, Zhang X A, Zhao Y T, Chen X M, Xiao G Q 2015 Phys. Rev. A 91 042707

  6. Zhang X A, Li Y Z, Zhao Y T et al., 2012 Acta Phys. Sin. 61 113401

  7. Zhang X A, Mei C X, Zhang Y et al., 2020 Acta Phys. Sin. 69 213301

  8. J. Ducrée, H. Andrä, U. Thumm, Phys. Rev. A 60, 3029 (1999)

    Article  ADS  Google Scholar 

  9. J. Das, L. Folkerts, R. Morgenstern, Phys. Rev. A 45, 4669 (1992)

    Article  ADS  Google Scholar 

  10. J. Burgdörfer, P. Lerner, F.W. Meyer, Phys. Rev. A 44, 5674 (1991)

    Article  ADS  Google Scholar 

  11. F. Aumayr, H. Kurz, D. Schneider, M.A. Briere, J.W. Mcdonald, C.E. Cunningham, H. Winter, Phys. Rev. Lett. 71, 1943 (1993)

    Article  ADS  Google Scholar 

  12. Iwai Y, Murakoshi D, Kanai Y, Oyama H, Ando K, Masuda H, Nishio K, Nakao M, Tamamura T, Komaki K, Yamazaki Y 2002 Nucl. Instr. and Meth. Phys. Res. Sect. B 193 504

  13. Kanai Y, Nakai Y, Iwai Y, Ikeda T, Hoshino M, Nishio K, Masuda H, Yamazaki Y 2005 Nucl. Instr. Methods Phys. Res. Sect. B 233 103

  14. H. Winter, F. Aumayr, J. Phys. B: At. Mol. Opt. Phys. 32, R39 (1999)

    Article  ADS  Google Scholar 

  15. J.P. Briand, G. Giardino, G. Borsoni, M. Froment, M. Eddrief, C. Sébenne, S. Bardin, D. Schneider, J. Jin, H. Khemliche, Z. Xie, M. Prior, Phys. Rev. A 54, 4136 (1996)

    Article  ADS  Google Scholar 

  16. J.P. Briand, L.D. Billy, P. Charles, S. Essabaa, P. Briand, R. Geller, J.P. Desclaux, S. Bliman, C. Ristori, Phys. Rev. Lett. 65, 159 (1990)

    Article  ADS  Google Scholar 

  17. Z.Y. Song, Z.H. Yang, G.Q. Xiao, Q.M. Xu, J. Chen, B. Yang, Z.R. Yang, Eur. Phys. J. D 64, 197 (2011)

    Article  ADS  Google Scholar 

  18. R. Schuch, D. Schneider, D.A. Knapp, D. DeWitt, J. McDonald, M.H. Chen, M.W. Clark, R.E. Marrs, Phys. Rev. Lett. 70, 1073 (1993)

    Article  ADS  Google Scholar 

  19. G.A. Machicoane, T. Schenkel, T.R. Niedermayr, M.W. Newmann, A.V. Hamza, A.V. Barnes, J.W. McDonald, J.A. Tanis, D.H. Schneider, Phys. Rev. A 65, 042903 (2002)

    Article  ADS  Google Scholar 

  20. M. Gryziński, Phys. Rev. 138, A336 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  21. H. Zhang, X. Chen, Z. Yang, J. Xu, Y. Cui, J. Shao, X. Zhang, Y. Zhao, Y. Zhang, G. Xiao, Nucl. Instrum. Methods Phys. Res. Sect. B 268, 1564 (2010)

    Article  ADS  Google Scholar 

  22. B.Z. Zhang, Z.Y. Song, X. Liu, C. Qian, X. Fang, C.J. Shao, W. Wang, J.L. Liu, J.K. Xu, Y. Feng, Z.C. Zhu, Y.L. Guo, L. Chen, L.T. Sun, Z.H. Yang, D.Y. Yu, Acta Phys. Sin. 70, 19320 (2021)

    Google Scholar 

  23. Center for X-ray Optics and Advanced Light Source, Lawrence Berkeley National Laboratory, X-Ray Data Booklet http://xdb.lbl.gov/

  24. J.P. Briand, D. Schneider, S. Bardin, H. Khemliche, J. Jin, Z. Xie, M. Prior, Phys. Rev. A 55, 3947 (1997)

    Article  ADS  Google Scholar 

  25. J.D. Garcia, R.J. Fortner, T.M. Kavanagh, Rev. Mod. Phys. 45, 111 (1973)

    Article  ADS  Google Scholar 

  26. J.H. Hubbell, P.N. Trehan, N. Singh, B. Chand, D. Mehta, M.L. Garg, R.R. Garg, S. Singh, S. Puri, J. Phys. Chem. Ref. Data 23, 339 (1994)

    Article  ADS  Google Scholar 

  27. Z. Liu, S.J. Cipolla, Comp. Phys. Commun. 97, 315 (1996)

    Article  ADS  Google Scholar 

  28. S.J. Cipolla, Comp. Phys. Commun. 182, 2439 (2011)

    Article  ADS  Google Scholar 

  29. J.H. McGuire, P. Richard, Phys. Rev. A 8, 1374 (1973)

    Article  ADS  Google Scholar 

  30. Y. Lei, R. Cheng, X.M. Zhou, X. Wang, Y.Y. Wang, J.R. Ren, Y.T. Zhao, X.W. Ma, G.Q. Xiao, Eur. Phys. J. D 72, 132 (2018)

    Article  ADS  Google Scholar 

  31. X. Liu, Z.Y. Song, B.Z. Zhang, C. Qian, X. Fang, C.J. Shao, W. Wang, J.L. Liu, J.K. Xu, Y. Feng, Z.C. Zhu, Y.L. Guo, L. Chen, L.T. Sun, Z.H. Yang, D.Y. Yu, Nucl. Technol. 44(12), 120502 (2021)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China through Grant Nos. 12075291 and 11675279.

Funding

National Natural Science Foundation of China (Grants Nos. 12075291, 11675279).

Author information

Authors and Affiliations

Authors

Contributions

Z.Y.S., B.Z.Z., and X.L. performed the measurements. Z.Y.S. designed the experiments. B.Z.Z. and Z.Y.S. processed the experimental data, performed the analysis, drafted the manuscript and designed the figures. C.Q., X.F. and L.T.S. arranged and operated the ECRIS. J.L.L. and W.W. designed the beam profile system. C.J.S. helped to operate the X-ray detector. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Zhang-Yong Song.

Additional information

Supported by the National Natural Science Foundation of China (Grants Nos. 12075291 and 11675279).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, BZ., Song, ZY., Liu, X. et al. K-shell ionization of 25–100 keV Nq+ (q = 3, 5) ions impinging on Al and Cu surfaces. Eur. Phys. J. D 76, 49 (2022). https://doi.org/10.1140/epjd/s10053-022-00378-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-022-00378-7

Navigation