Skip to main content
Log in

Synchronization and identification of time-variant network composed of various clusters with different topologies and node numbers

  • Regular Article – Nonlinear Dynamics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

An efficient control and identification technique is proposed in this work to synchronize the time-variant network composed of various clusters with different topologies and node numbers and to identify the unknown parameters in variable equations. Different kinds of chaotic systems containing unknown parameters, including quantum Dicke, Jaynes–Cumming models and Nd:YAG lasers, are taken as the nodes to construct three clusters and a time-varying network in order to verify the effectiveness of the designed controller and identification law. The simulation results show that the complete synchronization of all nodes within the network can be realized quickly and the unknown parameters are also accurately identified simultaneously even if topology of the network varies over time, indicating that the designed synchronization controller and the identification law for unknown parameters based on the Lyapunov stability theorem are universal and effective.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: All data include in this manuscript are available upon request by contacting with the first author. Email:904032639@qq.com.]

References

  1. S. Ahmadizadeh, D. Nešić, D.R. Freestone, D.B. Grayden, Automatica 71, 169 (2016)

    Article  Google Scholar 

  2. F.J. He, C.R. Li, X.O. Fan, Y.H. Lu, J.C. Sun, Eur. Phys. J. D 73, 145 (2019)

    Article  ADS  Google Scholar 

  3. C.R. Li, L. Lü, Y.M. Yang, S. Zhou, Y.X. Hong, Physica A 492, 2301 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  4. A.A. Koronovskii, O.I. Moskalenko, A.E. Hramov, Tech. Phys. Lett. 38, 924 (2012)

    Article  ADS  Google Scholar 

  5. Z.Y. Wu, X.C. Fu, Nonlinear Dyn. 72, 9 (2012)

    Article  Google Scholar 

  6. C. Hu, J. Yu, H.J. Jiang, Z.D. Teng, Nonlinear Dyn. 67, 1373 (2011)

    Article  Google Scholar 

  7. S.H. Strogatz, Nature 410, 268 (2001)

    Article  ADS  Google Scholar 

  8. D. Lee, J. Kim, J. Shin, J. Korean Phys. Soc. 70, 431 (2017)

    Article  ADS  Google Scholar 

  9. Z.Z. Zhang, S.G. Zhou, Z. Su, T. Zou, J.H. Guan, Eur. Phys. J. B 65, 141 (2008)

    Article  ADS  Google Scholar 

  10. D.J. Watts, S.H. Strogatz, Nature 393, 440 (1998)

    Article  ADS  Google Scholar 

  11. G. Corso, C.P.T. Cruz, Eur. Phys. J. B 90, 4 (2017)

    Article  ADS  Google Scholar 

  12. L. Lü, C.R. Li, S.Y. Bai, G. Li, T.T. Rong, Y. Gao, Z. Yan, Physica A 482, 808 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  13. H. Zhao, L.X. Li, H.P. Peng, J.H. Xiao, Y.X. Yang, M.W. Zheng, Nonlinear Dyn. 83, 1437 (2015)

    Article  Google Scholar 

  14. R. Rakkiyappan, N. Sakthivel, Complexity 21, 59 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  15. X.W. Liu, T.P. Chen, IEEE Trans. Neural Netw. 22, 1009 (2011)

    Article  Google Scholar 

  16. F. Lin, Z.Q. Zhang, J. Syst. Sci. Complex 33, 366 (2019)

    Article  Google Scholar 

  17. C.R. Li, L. Lü, G. Li, G.N. Zhao, L.Y. Gao, L.J. Ge, C.H. Han, Physica A 513, 742 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  18. L. Chen, J.A. Lu, J. Syst. Sci. Complex 21, 20 (2008)

    Article  MathSciNet  Google Scholar 

  19. F. Xiao, Q.T. Gan, Q. Yuan, Adv. Differ. Equ. 2019, 93 (2019)

    Article  Google Scholar 

  20. L. Shi, H. Zhu, S.M. Zhong, K.B. Shi, J. Cheng, Nonlinear Dyn. 88, 859 (2017)

    Article  Google Scholar 

  21. M. Girvan M.E.J. Newman, Proc. Natl. Acad., U S A 99, 7821 (2002)

  22. G. Palla, I. Deranyi, I. Farkas, Nature 435, 814 (2005)

    Article  ADS  Google Scholar 

  23. S. Vahedi, M.S.M. Noorani, Int. J. Mod. Phys. C 27, 1650087 (2016)

    Article  ADS  Google Scholar 

  24. F. Sorrentino, L.M. Pecora, A.M. Hagerstrom, T.E. Murphy, R. Roy, Advances 2, 1501737 (2016)

    Google Scholar 

  25. Y.L. Wang, J.D. Cao, Nonlinear Anal. 14, 842 (2013)

    Article  Google Scholar 

  26. V.E. Bunakov, Phys. Atom. Nucl. 79, 679 (2016)

    Article  Google Scholar 

  27. V.E. Bunakov, Phys. Atom. Nucl. 79, 561 (2016)

    Article  ADS  Google Scholar 

  28. G. Benenti, G. Casati, Riv Nuovo Cimento 30, 267 (2006)

    Google Scholar 

  29. X.W. Hou, B. Hu, Phys. Rev. A 69, 042110 (2004)

  30. E.T. Jaynes, F.W. Cummings, Proc. IEEE 5, 189 (1963)

    Google Scholar 

  31. T. Baer, J. Opt. Soc. Am. B 3, 1175 (1986)

    Article  ADS  Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China (11004092), the Foundation of Science and Technology Department of Liaoning Province, China (201602455), and the Foundation of Education Department of Liaoning Province, China (L201683665).

Author information

Authors and Affiliations

Authors

Contributions

Yanting Shi and Chengren Li proposed the basic idea of synchronization and parameter identification of uncertain time-variant clustering network; Xiaoou Fan and Suyuan Bai wrote the main programs; Yanting Shi and Yonghui Lu checked the formula derivations and programs. All authors analyzed and discussed the simulations results. Yanting Shi and Chengren Li wrote the main manuscript text, and all authors have given approval to the final version of the manuscript.

Corresponding authors

Correspondence to Chengren Li or Suyuan Bai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Y., Fan, X., Lu, Y. et al. Synchronization and identification of time-variant network composed of various clusters with different topologies and node numbers. Eur. Phys. J. D 75, 251 (2021). https://doi.org/10.1140/epjd/s10053-021-00251-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-021-00251-z

Navigation