Skip to main content
Log in

Revealing network topology and dynamical parameters in delay-coupled complex network subjected to random noise

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

It is well known that random noise and time delay are two inherent ingredients in complex networks, whose dynamical parameters and topological structures are often unknown or uncertain. This paper will employ the techniques of impulsive control and adaptive control to infer dynamical parameters and network topology in delay-coupled complex network under circumstance noise. By constructing an appropriate adaptive–impulsive control strategy in the response network, the unknown dynamical parameters and topology structure contained in the drive network are to be accurately identified; moreover, these two networks will achieve the global exponential synchronization in mean square. Based on the comparison theorem of impulsive differential equations, the accuracy of the proposed identification strategy is rigorously proved. Finally, two examples with networks of chaotic oscillators are presented to illustrate the application of the suggested strategy. Meanwhile, numerical results indicate that our proposed scheme is robust against the impulsive gain, the update gain and the network topology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Watts, D.J., Strogatz, S.H.: Collective dynamics of ’small-world’ networks. Nature 393, 440–442 (1998)

    Article  Google Scholar 

  2. Strogatz, S.: Exploring complex networks. Nature 410, 268–276 (2001)

  3. Albert, R., Barabasi, A.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47–97 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Sun, W., Hu, T., Chen, Z., Chen, S., Xiao, L.: Impulsive synchronization of a general nonlinear coupled complex network. Commum. Nonlinear Sci. Numer. Simul. 16, 4501–4507 (2011)

  5. Yu, W., Chen, G., Lü, J.: On pinning synchronization of complex dynamical networks. Automatica 45, 429–435 (2009)

    Article  MATH  Google Scholar 

  6. Zhou, J., Lu, J., Lü, J.: Pinning adaptive synchronization of a general complex dynamical network. Automatica 44, 996–1003 (2008)

    Article  MATH  Google Scholar 

  7. Tang, H., Chen, L., Lu, J., K. Tsec, C.: Adaptive synchronization between two complex networks with nonidentical topological structures. Phys. A 387, 5623–5630 (2008)

    Article  Google Scholar 

  8. Hu, M., Yang, Y., Xu, Z., Zhang, R., Guo, L.: Projective synchronization in drive–response dynamical networks. Phys. A 387, 457–466 (2007)

    Article  Google Scholar 

  9. Du, H.: Function projective synchronization in drive-response dynamical networks with nonidentical nodes. Chaos 44, 510–514 (2011)

    MATH  Google Scholar 

  10. Lu, H.: Projective lag synchronization of the general complex dynamical networks with distinct nodes. Commum. Nonlinear Sci. Numer. Simul. 17, 4417–4429 (2012)

    Article  MATH  Google Scholar 

  11. Zhang, Q., Zhao, J.: Projective and lag synchronization between general complex network via impulsive control. Nonlinear Dyn. 67, 2519–2525 (2012)

    Article  MATH  Google Scholar 

  12. Zhou, C., Kurths, J.: Dynamical weights and enhanced synchronization in adaptive complex networks. Phys. Rev. Lett. 96, 164102 (2006)

    Article  Google Scholar 

  13. Li, C., Sun, W., Kurths, J.: Synchronization between two coupled complex networks. Phys. Rev. E 76, 046204 (2007)

    Article  Google Scholar 

  14. Liu, H., Chen, J., Lu, J., Cao, M.: Generalized synchronization in complex dynamical networks via adaptive couplings. Phys. A 389, 1759–1770 (2010)

    Article  Google Scholar 

  15. Yu, D., Righero, M.: Estimating topology of networks. Phys. Rev. Lett. 97, 188701 (2006)

    Article  Google Scholar 

  16. Zhou, J., Lu, J.: Topology identification of weighted complex dynamical networks. Phys. A 386, 481–491 (2007)

    Article  MathSciNet  Google Scholar 

  17. Xu, Y., Zhou, W., Fang, J., Lu, H.: Structure identification and adaptive synchronization of uncertain general complex dynamical networks. Phys. Lett. A 374, 272–278 (2009)

    Article  MATH  Google Scholar 

  18. Xu, Y., Zhou, W., Fang, J., Sun, W.: Topology identification and adaptive synchronization of uncertain complex networks with adaptive double scaling functions. Commum. Nonlinear Sci. Numer. Simul. 16, 3337–3343 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  19. Tang, S., Chen, L., He, Y.: Optimization-based topology identification of complex networks. Chin. Phys. B 20, 110502 (2011)

    Article  Google Scholar 

  20. Timme, M.: Revealing network connectivity from response dynamics. Phys. Lett. A 98, 224101 (2007)

    Article  Google Scholar 

  21. Yu, D., Parlitz, U.: Inferring network connectivity by delayed feedback control. Plos One 6, e24333 (2011)

    Article  Google Scholar 

  22. Xu, J., Zheng, S., Cai, G.: Topology identification of weighted complex dynamical networks with non-delayed and time-varying delayed coupling. Chin. J. Phys. 48, 482–492 (2010)

    MathSciNet  Google Scholar 

  23. Liu, H., Lu, J., Lü, J., David, JHill: Structure identification of uncertain general complex dynamical networks with time delay. Automatica 45, 1799–1807 (2009)

    Article  MATH  Google Scholar 

  24. Guo, W., Chen, S., Sun, W.: Topology identification of the complex networks with non-delayed and delayed Coupling. Phys. Lett. A 373, 3724–3729 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  25. Wu, X.: Synchronization-based topology identification of weighted general complex dynamical networks with time-varying coupling delay. Phys. A 387, 997–1008 (2008)

    Article  Google Scholar 

  26. Zheng, S., Bi, Q., Cai, G.: Adaptive projective synchronization in complex networks with timevarying coupling delay. Phys. Lett. A 373, 1553–1559 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  27. Che, Y., Li, R., Han, C., Wang, J., Cui, S., Deng, B., Wei, X.: Adaptive lag synchronization based topology identification scheme of uncertain general complex dynamical networks. Eur. Phys. J. B 85, 265 (2012)

    Article  Google Scholar 

  28. Che, Y., Li, R., Han, C., Cui, S., Wang, J.: Topology identification of uncertain nonlinearly coupled complex networks with delays based on anticipatory synchronization. Chaos 23, 013127 (2013)

    Article  MathSciNet  Google Scholar 

  29. Wu, X., Zhao, X., Lü, J.: Topology identification of complex dynamical networks with stochastic perturbations. In: Proceedings of the \(30^{\rm th}\) Chinese Control Conference (2011)

  30. Ren, J., Wang, W., Li, B., Lai, Y.: Noise bridges dynamical correlation and topology in complex oscillator networks. Phys. Rev. Lett. 104, 058701 (2010)

    Article  Google Scholar 

  31. Zhang, G., Liu, Z., Ma, Z.: Synchronization of complex dynamical networks via impulsive control. Chaos 17, 043126 (2007)

    Article  MathSciNet  Google Scholar 

  32. Zhou, J., Xiang, L., Liu, Z.: Synchronization in complex delayed dynamical networks with impulsive effects. Phys. A 384, 684–692 (2007)

    Article  MathSciNet  Google Scholar 

  33. Cai, S., Zhou, J., Xiang, L., Liu, Z.: Robust impulsive synchronization of complex delayed dynamical networks. Phys. Lett. A 372, 4990–4995 (2008)

    Article  MATH  Google Scholar 

  34. Yang, Y., Cao, J.: Exponential synchronization of the complex dynamical networks with a coupling delay and impulsive effects. Nonlinear Anal. Real World Appl. 11, 1650–1659 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  35. Sun, W., Chen, Z., Lü, J., Chen, S.: Outer synchronization of complex networks with delay via impulse. Nonlinear Dyn. 69, 1751–1764 (2012)

    Article  MATH  Google Scholar 

  36. Yang, X., Cao, J., Lu, J.: Stochastic synchronization of complex networks with nonidentical nodes via hybrid adaptive and impulsive control. IEEE Trans. Circ. Syst. 59, 371–384 (2012)

    Article  MathSciNet  Google Scholar 

  37. Zhang, Q., Luo, J., Wan, L.: Parameter identification and synchronization of uncertain general complex networks via adaptive–impulsive control. Nonlinear Dyn. 71, 353–359 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  38. Zhang, Q., Luo, J., Wan, L.: Erratum to: parameter identification and synchronization of uncertain general complex networks via adaptive–impulsive control. Nonlinear Dyn. 75, 403–405 (2014)

  39. Liu, D., Wu, Z., Ye, Q.: Structure identification of an uncertain network coupled with complex-variable chaotic systems via adaptive impulsive control. Chin. Phys. B 23, 040504 (2014)

    Article  Google Scholar 

  40. Yang, Z., Xu, D.: Stability analysis and design of impulsive control systems with time delay. IEEE Trans. Autom. Control 52, 1448–1454 (2007)

    Article  Google Scholar 

  41. Lakshmikantham, V., Bainov, D., Dnov, P.: Theory of Impulsive Differential Equations. World Scientific, Singapore (1989)

    Book  MATH  Google Scholar 

Download references

Acknowledgments

This work is partially supported by the National Natural Science Foundation of China (Grant No. 11272258 and 11172342), the Fundamental Funds Research for the Central Universities (Grant No. GK201302001) and the NSF of Shaanxi Province (Grant No. 2014JQ1013). This work is also partially supported by the China Scholarship fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. L. Yang.

Appendix

Appendix

The Proof of the Theorem.

Proof

Let \(\widetilde{\theta }_i (t)=\overline{\theta }_i (t)-\theta _i \), \(\widetilde{b_{ij} }(t)=d_{ij} (t)-b_{ij} \), \(e_i (t)=y_i (t)-x_i (t)\), \(\left( {i,j=1,2,\ldots M} \right) \). Subtracting the drive network (1) from the response network (2) and using the controller (3) and (4), then the synchronization error between the drive network and the response network can be written as

$$\begin{aligned}&\left\{ {{\begin{array}{l} {\hbox {d}}e_i (t)=\Big [g_i (t,y_i (t)){\widetilde{\theta }_i }(t)+F_i (t,y_i (t),\theta _i )\\ \qquad \qquad \quad -F_i (t,x_i (t),\theta _i )+\sum _{j=1}^M {\widetilde{b}_{ij}}(t)Ay_j (t-\tau (t)) \\ \qquad \qquad \quad \left. +\,\sum _{j=1}^M {b_{ij} Ae_j (t-\tau (t))} -k_i (t)e_i (t)\right] dt\\ \qquad \qquad \quad +\,\sigma _i (e_i (t),e_i (t-\tau (t)),t)dW(t),t\ne t_k \\ {\Delta e_i (t_k )=e_i (t_k )\!-\!e_i (t_k^- )=-d_k e_i (t_k^- ),t=t_k ,k\in Z_+ } \\ \end{array} }} \right. \!,\nonumber \\ \end{aligned}$$
(12)

where \(\sigma _i (e_i (t),e_i (t-\tau (t)),t)=\sigma _i (y_i (t),y_i (t-\tau (t)),t)-\sigma _i (x_i (t),x_i (t-\tau (t)),t)\), \(\phi _i (s)=({\widetilde{\theta }_i }(s),{\widetilde{b}_{ij} }(s),k_i (s),e_i (s))\in R^{m_1 +M+1+n}\) is the initial value of (12).

Introduce the following V function

$$\begin{aligned} V(t)= & {} \frac{(1-d_k )^{2}}{2}\sum _{i=1}^M {\widetilde{\theta _i }^{T}(t)\widetilde{\theta _i }(t)}\\&+\frac{(1-d_k )^{2}}{2}\sum _{i=1}^M {\sum _{j=1}^M {\widetilde{b_{ij} }} } ^{2}(t)\\&+\frac{(1-d_k )^{2}}{2}\sum _{i=1}^M {\frac{1}{\lambda _i }(k_i (t)-L-\alpha )^{2}}\\&+\frac{1}{2}\sum _{i=1}^M {e_i^T } (t)e_i (t), \end{aligned}$$

where \(L=\max \limits _{1\le i\le M} \{L_i \}\), \(\alpha =\lambda _{\max } \left( \frac{1}{2}CC^{T}\right) \), \(C=B\otimes A\), \(\otimes \) is the Kronecker product.

Since the impulsive controller acts only at impulsive instant, and \(d_k =0\) for any \(t\in (t_{k-1} ,t_k )\), thus the V function can be written as for \(t\in (t_{k-1} ,t_k )\)

$$\begin{aligned} V(t)= & {} \frac{1}{2}\sum _{i=1}^M {\widetilde{\theta } _i}^{T}(t){\widetilde{\theta }_i }(t) +\frac{1}{2}\sum _{i=1}^M {\sum _{j=1}^M {\widetilde{b}_{ij}}} ^{2}(t)\\&+\frac{1}{2}\sum _{i=1}^M {\frac{1}{\lambda _i }(k_i (t)-L-\alpha )^{2}}\\&+\frac{1}{2}\sum _{i=1}^M {e_i^T } (t)e_i (t). \end{aligned}$$

Applying the \(It\hat{o}\) formula to the combined equations of the error dynamical network (12) and the adaptive update laws (5)– (7), then the differential operator \(\ell V\)can be derived as follows

$$\begin{aligned} \ell V= & {} -L\sum _{i=1}^M {e_i ^{T}(t)e_i (t)} -\alpha \sum _{i=1}^M {e_i ^{T}(t)e_i (t)} \nonumber \\&+\sum _{i=1}^M {e_i ^{T}(t)} [F_i (t,y_i (t),\theta _i )-F_i (t,x_i (t),\theta _i )]\nonumber \\&+\sum _{i=1}^M {\sum _{j=1}^M {e_i ^{T}(t)b_{ij} Ae_j (t-\tau (t))} }\nonumber \\&+\frac{1}{2}\sum _{i=1}^M {trace(\sigma _i^T \sigma _i )}. \end{aligned}$$
(13)

From \((H_1 )\) and \((H_2 )\), one can obtain, respectively, that

$$\begin{aligned} e_i^T (t)[F_i (t,y_i (t),\theta _i )-F_i (t,x_i (t),\theta _i )]\le L_i e_i^T (t)e_i (t) \end{aligned}$$

and

$$\begin{aligned} \frac{1}{2}{\hbox {trace}}(\sigma _i ^{T}\sigma _i )\le & {} pe_i ^{T}(t)e_i (t)+qe_i ^{T}(t-\tau (t))\\&\times e_i (t-\tau (t)). \end{aligned}$$

Then (13) can be rewritten as

$$\begin{aligned} \ell V\le & {} -\alpha \sum _{i=1}^M {e_i^T (t)e_i (t)}\nonumber \\&+ \sum _{i=1}^M {\sum _{j=1}^M {e_i ^{T}(t)b_{ij} Ae_j (t-\tau (t))} } \nonumber \\&+q\sum _{i=1}^M {e_i^T (t-\tau (t))e_i (t-\tau (t))} \nonumber \\&+p\sum _{i=1}^M {e_i^T (t)e_i (t)} . \end{aligned}$$
(14)

Let \(e(t)=(e_1 ^{T}(t),e_2 ^{T}(t),\ldots ,e_M ^{T}(t))^{T}\in R^{nM}\), then

$$\begin{aligned} \ell V\le & {} -\alpha e^{T}(t)e(t)+e^{T}(t)Ce(t-\tau (t))\\&+pe^{T}(t)e(t)+qe^{T}(t-\tau (t))e(t-\tau (t)). \end{aligned}$$

It follows from Lemma 1 that

$$\begin{aligned}&e^{T}(t)Ce(t-\tau (t))\le \frac{1}{2}e^{T}(t)CC^{T}e(t)\\&\quad +\frac{1}{2}e^{T}(t-\tau (t))e(t-\tau (t)). \end{aligned}$$

Hence,

$$\begin{aligned} \ell V\le & {} -\alpha e^{T}(t)e(t)+\frac{1}{2}e^{T}(t)CC^{T}e(t)\\&+\,\frac{1}{2}e^{T}(t-\tau (t))e(t-\tau (t))+pe^{T}(t)e(t)\\&+\,qe^{T}(t-\tau (t))e(t-\tau (t))\\\le & {} p\sum _{i=1}^M {e_i^T (t)e_i (t)}\\&+\left( q+\frac{1}{2}\right) \sum _{i=1}^M {e_i^T (t-\tau (t))e_i (t-\tau (t))}\\\le & {} 2pV(t)+(2q+1)V(t-\tau (t)). \end{aligned}$$

According to the \(It\hat{o}\) formula, we have

$$\begin{aligned} dV(t)= & {} \ell Vdt\\&+\sum _{i=1}^M {e_i^T (t)} \sigma _i (e_i (t),e_i (t-\tau (t)),t)dW(t)\\\le & {} [2pV(t)+(2q+1)V(t-\tau (t))]dt\\&+\sum _{i=1}^M {e_i^T (t)} \sigma _i (e_i (t),e_i (t-\tau (t)),t)dW(t). \end{aligned}$$

Taking mathematical expectation on both sides of the above inequality, one can obtain that

$$\begin{aligned} \frac{\textit{dEV}(t)}{dt}\le 2pEV(t)+(2q+1)EV(t-\tau (t)). \end{aligned}$$
(15)

When \(t=t_k \), \(e_i (t_k )=\Delta e_i (t_k )+e_i (t_{_k }^- )=-d_k e_i (t_{_k }^- )+e_i (t_{_k }^- )=(1-d_k )e_i (t_{_k }^- )\).

Then the V function can be rewritten as

$$\begin{aligned} V(t_k )= & {} \frac{(1-d_k )^{2}}{2}\sum _{i=1}^M {\widetilde{\theta }_i }^{T}(t_{_k }^- ){\widetilde{\theta }_i} (t_{_k }^- )\\&+\,\frac{(1-d_k )^{2}}{2}\sum _{i=1}^M {\sum _{j=1}^M {\widetilde{b}_{ij}}} ^{2}(t_{_k }^- ) \\&+\,\frac{(1-d_k )^{2}}{2}\sum _{i=1}^M {\frac{1}{\lambda _i }(k_i (t_{_k }^- )-L-\alpha )^{2}} \\&+\,\frac{(1-d_k )^{2}}{2}\sum _{i=1}^M {e_i^T } (t_{_k }^- )e_i (t_{_k }^- ) \\= & {} (1-d_k )^{2}V(t_{_k }^- ). \end{aligned}$$

In view of (8), we have \(V(t_k )\le \beta V(t_{_k }^- )\), hence

$$\begin{aligned} EV(t_k )\le \beta EV(t_{_k }^- ). \end{aligned}$$
(16)

For any \(\delta >0\), let \(\upsilon (t)\) be a unique solution of the following impulsive delay system

$$\begin{aligned}&{}\left\{ {{\begin{array}{l} \dot{\upsilon }(t)=2p\upsilon (t)+(2q+1)\upsilon (t-\tau (t))+\delta ,t\ne t_k \\ {\upsilon (t_k )=\beta \upsilon (t_{_k }^- ),t=t_k ,k\in Z_+ } \\ {\upsilon (s)=E\left\| {\phi (s)} \right\| ^{2},s\in [-\bar{\tau },0]} \\ \end{array} }} \right. \!, \end{aligned}$$
(17)

where \(\phi (s)=(\phi _1^T (s),\phi _2^T (s),\ldots ,\phi _M^T (s))^{T}\) is the initial value of (12).

Since \(EV(s)\le E\left\| {\phi (s)} \right\| ^{2}=\upsilon (s)\) for \(s\in [-\bar{\tau },0]\), it follows from Lemma 2 (i.e., the comparison theorem of impulsive differential equations) that

$$\begin{aligned} \upsilon (t)\ge EV(t)\ge 0,\forall t\ge 0. \end{aligned}$$
(18)

Considering the formula for the variation of parameters [41], we have

$$\begin{aligned} \upsilon (t)= & {} P(t,0)\upsilon (0)\nonumber \\&+\int _0^t {P(t,s)} [(2q+1)\upsilon (s-\tau (s))+\delta ]ds,\nonumber \\ \end{aligned}$$
(19)

where \(P(t,s),\, t,s\ge 0\) is the Cauchy matrix of linear system

$$\begin{aligned} \left\{ {{\begin{array}{l} {\dot{\eta }(t)=2p\eta (t),t\ne t_k } \\ {\eta (t_k )=\beta \eta (t_{_k }^- ),t=t_k } \\ \end{array} }} \right. . \end{aligned}$$

In view of the representation of the Cauchy matrix, we can get the following estimation

$$\begin{aligned} P(t,s)= & {} e^{2p(t-s)}\prod _{s\le t_k \le t} \beta \le e^{2p(t-s)}\beta ^{\frac{t-s}{\zeta }-1}\nonumber \\= & {} \beta ^{-1}e^{\left( 2p+\frac{In\beta }{\zeta }\right) (t-s)}=\beta ^{-1}e^{-a(t-s)}, \end{aligned}$$
(20)

where \(a=-(2p+\frac{In\beta }{\zeta })\).

Let \(\gamma =\beta ^{-1}\sup \limits _{-\bar{\tau }\le s\le 0} \{E\left\| {\phi (s)} \right\| ^{2}\}\), then it can be derived from (19) and (20)

$$\begin{aligned}&\upsilon (t)\le \gamma e^{-at}+\int _0^t \beta ^{-1}e^{-a(t-s)}\nonumber \\&\quad \times [(2q+1)\upsilon (s-\tau (s))+\delta ] {\hbox {d}}s. \end{aligned}$$
(21)

Now we introduce the following function

$$\begin{aligned} h(\mu )=\mu -a+(2q+1)\beta ^{-1}e^{\mu \bar{\tau }}. \end{aligned}$$

It follows from (9) that \(h(0)=-a+(2q+1)\beta ^{-1}<0\). Since \(h(+\infty )=+\infty \) and \(h^{{\prime }}(\mu )>0\), there exists a unique \(\lambda >0\) such that

$$\begin{aligned} \lambda -a+(2q+1)\beta ^{-1}e^{\lambda \bar{\tau }}=0. \end{aligned}$$
(22)

From (9), it is obvious that \(a\beta -(2q+1)>0\), therefore,

$$\begin{aligned} \upsilon (t)= & {} E\left\| {\phi (t)} \right\| ^{2}\le \gamma <\gamma e^{-\lambda t}\\&+\frac{\delta }{a\beta -(2q+1)}, \qquad \forall t\in [-\bar{\tau },0]. \end{aligned}$$

In the following, we shall prove that

$$\begin{aligned} \upsilon (t)<\gamma e^{-\lambda t}+\frac{\delta }{a\beta -(2q+1)}, \forall t\ge 0. \end{aligned}$$
(23)

If this is not true, there will exist a smallest nonnegative \(t^{*}\) such that

$$\begin{aligned} \upsilon (t)<\gamma e^{-\lambda t}+\frac{\delta }{a\beta -(2q+1)}, 0\le t<t^{*} \end{aligned}$$
(24)

and

$$\begin{aligned} \upsilon (t^{*})\ge \gamma e^{-\lambda t^{*}}+\frac{\delta }{a\beta -(2q+1)}. \end{aligned}$$
(25)

Combining (21) with (24), we have

$$\begin{aligned}&\upsilon (t^{*})\le \gamma e^{-at^{*}}\nonumber \\&\quad +\int _0^{t^{*}} \beta ^{-1}e^{-a(t^{*}-s)}[(2q+1)\upsilon (s-\tau (s))+\delta ] {\hbox {d}}s\nonumber \\&\quad <\gamma e^{-at^{*}}+\int _0^{t^{*}} \beta ^{-1}e^{-a(t^{*}-s)}\Bigg [(2q+1)\nonumber \\&\qquad \qquad \left. \left( \gamma e^{-\lambda (s-\tau (s))}+\frac{\delta }{a\beta -(2q+1)}\right) +\delta \right] {\hbox {d}}s \nonumber \\&\quad <e^{-at^{*}}\left\{ \gamma +\int _0^{t^{*}} \beta ^{-1}e^{as}\left[ (2q+1)\left( \gamma e^{-\lambda (s-\tau (s))}\right. \right. \right. \nonumber \\&\qquad \qquad \qquad \left. \left. \left. +\frac{\delta }{a\beta -(2q+1)}\right) +\delta \right] ds\right. \nonumber \\&\qquad \left. +\frac{\delta }{a\beta -(2q+1)}\right\} . \end{aligned}$$
(26)

In view of (22) and (26), we have

$$\begin{aligned}&\upsilon (t^{*})\,{<}\,e^{-at^{*}}\left\{ \gamma +\int _0^{t^{*}} {\beta ^{-1}e^{as}(2q+1)\gamma e^{-\lambda s}e^{\lambda \tau (s)}{\hbox {d}}s} \right. \\&\qquad +\int _0^{t^{*}} {\beta ^{-1}e^{as}(2q+1)\frac{\delta }{a\beta -(2q+1)}{\hbox {d}}s} \\&\qquad \left. +\int _0^{t^{*}} {\beta ^{-1}e^{as}\delta } ds+\frac{\delta }{a\beta -(2q+1)}\right\} \\&\quad =\gamma e^{-\lambda t^{*}}+\frac{\delta }{a\beta -(2q+1)}. \end{aligned}$$

Obviously, the above inequality contradicts (25). Thus, the inequality (23) holds. Letting \(\delta \rightarrow 0\), we can get from (18) that

$$\begin{aligned} EV(t)\le \upsilon (t)<\gamma e^{-\lambda t}, \,t\ge 0. \end{aligned}$$

Therefore, we can derive that \(E\left\| {e_i (t)} \right\| ^{2}<2\gamma e^{-\lambda t}\left( {i=1,2,\ldots ,M} \right) \) from the V function. From the Definition, we know that the solution \(e_i (t)=0\) of (12) is exponentially stable in mean square, which means that the response network (2) can exponentially synchronize the drive network (1) in mean square. Moreover, from \((H_3 )\), Equations (7) and (12) one can obtain that \({\widetilde{\theta }_i}(t)=0, {\widetilde{b}_{ij} }(t)=0\) are also exponentially stable in mean square, and the feedback strength \(k_i(t)\) convergences to some constants. Thus, the unknown dynamical parameters and topology structure contained in the drive network (1) are to be accurately inferred during the process of synchronization between the drive network (1) and the response network (2). This completes the proof of the Theorem. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X.L., Wei, T. Revealing network topology and dynamical parameters in delay-coupled complex network subjected to random noise. Nonlinear Dyn 82, 319–332 (2015). https://doi.org/10.1007/s11071-015-2160-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2160-8

Keywords

Navigation