Skip to main content
Log in

Verifiable threshold quantum secret sharing with sequential communication

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

A (t, n) threshold quantum secret sharing (QSS) is proposed based on a single d-level quantum system. It enables the (t, n) threshold structure based on Shamir’s secret sharing and simply requires sequential communication in d-level quantum system to recover secret. Besides, the scheme provides a verification mechanism which employs an additional qudit to detect cheats and eavesdropping during secret reconstruction and allows a participant to use the share repeatedly. Analyses show that the proposed scheme is resistant to typical attacks. Moreover, the scheme is scalable in participant number and easier to realize compared to related schemes. More generally, our scheme also presents a generic method to construct new (t, n) threshold QSS schemes based on d-level quantum system from other classical threshold secret sharing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shamir, A.: How to share a secret. Commun. ACM 22, 612 (1979)

    Article  MathSciNet  Google Scholar 

  2. Blakley, G.R.: Safeguarding cryptographic keys. In: Proceedings of national computer conference, New York, vol. 313 (1979)

  3. Harn, L.: Group authentication. IEEE Trans. Comput. 62(9), 1893 (2013)

    Article  MathSciNet  Google Scholar 

  4. Boldyreva, A.: Threshold signatures, multisignatures and blind signatures based on the gap-Diffie-Hellman-group signature scheme. In: Public key cryptography-PKC., vol. 31, Springer, Berlin (2002)

    Google Scholar 

  5. Harn, L.: Group-oriented (\(t\), \(n\)) threshold digital signature scheme and digital multisignature. IEEE Proc. Comput. Digit. Techn. 141(5), 307 (1994)

    Article  Google Scholar 

  6. Liu, Y.N., Harn, L., Mao, L., Xiong, Z.: Full-healing group-key distribution in online social networks. Int. J. Secur. Netw. 11(1–2), 12 (2016)

    Article  Google Scholar 

  7. Desmedt, Y.G.: Threshold cryptography. Eur. Trans. Telecommun. 5(4), 449 (1994)

    Article  Google Scholar 

  8. Patel, K.: Secure multiparty computation using secret sharing. In: International conference on signal processing, communication, power and embedded system, IEEE, p. 863 (2016)

  9. Cleve, R., Gottesman, D., Lo, H.K.: How to share a quantum secret. Phys. Rev. Lett. 83, 648 (1999)

    Article  ADS  Google Scholar 

  10. Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  11. Yu, I.C., Lin, F.L., Huang, C.Y.: Quantum secret sharing with multilevel mutually (un) biased bases. Phys. Rev. A 78, 012344 (2008)

    Article  ADS  Google Scholar 

  12. Bai, C.M., Li, Z.H., Xu, T.T., Li, Y.M.: Quantum secret sharing using the \(d\)-dimensional GHZ state. Quantum Inf. Process 16(3), 59 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  13. Tavakoli, A., Herbauts, I., Zukowski, M., Bourennane, M.: Secret sharing with a single \(d\)-level quantum system. Phys. Rev. A 92, 030302 (2015)

    Article  ADS  Google Scholar 

  14. Hsu, L.Y.: Quantum secret-sharing protocol based on Grover’s algorithm. Phys. Rev. A 68, 022306 (2003)

    Article  ADS  Google Scholar 

  15. Guo, G.P., Guo, G.C.: Quantum secret sharing without entanglement. Phys. Lett. A 310(4), 247–251 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  16. Markham, D., Sanders, B.C.: Graph states for quantum secret sharing. Phys. Rev. A 78, 042309 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  17. Karimipour, V., Asoudeh, M.: Quantum secret sharing and random hopping: using single states instead of entanglement. Phys. Rev. A 92, 030301 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  18. Yang, W., Huang, L., Shi, R., He, L.: Secret sharing based on quantum Fourier transform. Quantum Inf. Process 12(7), 2465 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  19. Lai, H., Luo, M.X., Pieprzyk, J., Li, T., Liu, Z.M., Orgun, M.A.: Large-capacity three-party quantum digital secret sharing using three particular matrices coding. Commun. Theor. Phys. 66(05), 501–508 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  20. Kogias, I., Xiang, Y., He, Q.Y., Adesso, G.: Unconditional security of entanglement-based continuous-variable quantum secret sharing. Phys. Rev. A 95, 012315 (2017)

    Article  ADS  Google Scholar 

  21. Tittel, W., Zbinden, H., Gisin, N.: Experimental demonstration of quantum secret sharing. Phys. Rev. A 63(4), 042301 (2001)

    Article  ADS  Google Scholar 

  22. Schmidt, C., Trojek, P., Bourennane, M., Kurtsiefer, C., Zukowski, M., Weinfurter, H.: Experimental single qubit quantum secret sharing. Phys. Rev. Lett. 95, 230505 (2005)

    Article  ADS  Google Scholar 

  23. Chen, Y.A., Zhang, A.N., Zhao, Z., Zhou, X.Q., Lu, C.Y., Peng, C.Z.: Experimental quantum secret sharing and third-man quantum cryptography. Phys. Rev. Lett 95(20), 200502 (2005)

    Article  ADS  Google Scholar 

  24. Lu, H., Zhang, Z., Chen, L.K., Li, Z.D., Liu, C., Li, L.: Secret sharing of a quantum state. Phys. Rev. Lett 117(3), 030501 (2016)

    Article  ADS  Google Scholar 

  25. Lance, A.M., Symul, T., Bowen, W.P., Tyc, T., Sanders, B.C., Lam, P.K.: Continuous variable (2, 3) threshold quantum secret sharing schemes. New J. Phys. 5, 4 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  26. Lau, H.K., Weedbrook, C.: Quantum secret sharing with continuous-variable cluster states. Phys. Rev. A 88, 042313 (2013)

    Article  ADS  Google Scholar 

  27. Wu, Y., Cai, R., He, G., Zhang, J.: Quantum secret sharing with continuous variable graph state. Quantum Inf. Process. 13, 1085 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  28. Rahaman, R., Parker, M.G.: Quantum scheme for secret sharing based on local distinguishability. Phys. Rev. A 91, 022330 (2015)

    Article  ADS  Google Scholar 

  29. Yang, Y.H., Gao, F., Wu, X., Qin, S.J., Zuo, H.J., Wen, Q.Y.: Quantum secret sharing via local operations and classical communication. Sci. Rep. 5, 16967 (2015)

    Article  ADS  Google Scholar 

  30. Wang, J., Li, L., Peng, H., Yang, Y.: Quantum-secret-sharing scheme based on local distinguishability of orthogonal multiqudit entangled states. Phys. Rev. A 95, 022320 (2017)

    Article  ADS  Google Scholar 

  31. Tokunaga, Y., Okamoto, T., Imoto, N.: Threshold quantum cryptography. Phys. Rev. A 71, 012314 (2005)

    Article  ADS  Google Scholar 

  32. Qin, H., Zhu, X., Dai, Y.: (\(t\), \(n\)) Threshold quantum secret sharing using the phase shift operation. Quantum Inf. Process 14(8), 2997–3004 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  33. Song, X.L., Liu, Y.B., Deng, H.Y., Xiao, Y.G.: (\(t\), \(n\)) Threshold d-level quantum secret sharing. Sci. Rep. 7, 6366 (2017)

    Article  ADS  Google Scholar 

  34. Lu, C.B., Miao, F.Y., Meng, K.J., Yu, Y.: Threshold quantum secret sharing based on single qubit. Quantum Inf. Process. 17(3), 64 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  35. Lai, H., Zhang, J., Luo, M.X., Pan, L., Pieprzyk, J., Xiao, F.Y., Orgun, M.A.: Hybrid threshold adaptable quantum secret sharing scheme with reverse Huffman–Fibonacci tree coding. Sci. Rep. 6, 31350 (2016)

    Article  ADS  Google Scholar 

  36. Ivanovic, I.D.: Geometrical description of quantal state determination. J. Phys. A 14, 3241 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  37. Wootters, W.L., Fields, B.D.: Optimal state-determination by mutually unbiased measurements. Ann. Phys. 191, 363 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  38. Miao, F.Y., Xiong, Y., Wang, X.F., Badawy, M.: Randomized component and its application to (t, m, n)-group oriented secret sharing. IEEE Trans. Inf. Forensics Secur. 10(5), 889–899 (2015)

    Article  Google Scholar 

  39. Gao, F., Qin, S.J., Wen, Q.Y.: A simple participant attack on the Bradler–Dusek protocol. Quantum Inf. Comput. 7(4), 329 (2007)

    MathSciNet  MATH  Google Scholar 

  40. He, G.P.: Comment on experimental single qubit quantum secret sharing. Phys. Rev. Lett. 98, 028901 (2007)

    Article  ADS  Google Scholar 

  41. McEliece, R.J., Sarwate, D.V.: On sharing secrets and Reed–Solomon codes. Commun. ACM 24(9), 583 (1981)

    Article  MathSciNet  Google Scholar 

  42. Massey, J.L.: Minimal codewords and secret sharing. In: Proceedings of the 6th joint Swedish–Russian international workshop on information theory. IEEE Press, Washington DC, vol. 276 (1993)

  43. Asmuth, C., Bloom, J.: A modular approach to key safeguarding. IEEE Trans. Inf. Theory 30(2), 208 (1983)

    Article  MathSciNet  Google Scholar 

  44. Mignotte, M.: How to share a secret. In: Conference on cryptography, Springer, Berlin vol. 149, 371 (1982)

Download references

Acknowledgements

We would like to thank the anonymous reviewer for helpful suggestions. This work is supported by the National Natural Science Foundation of China under Grant Nos. 61572454, 61572453, 61520106007 and Anhui Initiative in Quantum Information Technologies under Grant No. AHY150100.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuyou Miao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, C., Miao, F., Hou, J. et al. Verifiable threshold quantum secret sharing with sequential communication. Quantum Inf Process 17, 310 (2018). https://doi.org/10.1007/s11128-018-2059-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-2059-7

Keywords

Navigation