Skip to main content
Log in

Solitary and shock wave in magnetized collisional pair-ion plasmas

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The effect of ion–ion collision on the dynamics of nonlinear magnetosonic wave in a magnetized pair-ion plasma consisting of positive and negative ions has been studied. The external magnetic field is situated perpendicular to the wave propagation. Two fluid model is used to describe the dynamics of positive and negative ions. Lagrangian transformation technique is used to carry out the linear and nonlinear analysis. Linear analysis yields the dispersion relation of magnetosonic wave in pair-ion plasmas. In small amplitude limit, Korteweg-de Vries Burgers’ (KdVB) equation has defined the nonlinear propagations of magnetosonic wave. Ion–ion collisions are the source of dissipation in the system and also the origin of the Burgers’ term in KdVB equation. This Burgers’ term in KdVB equation is the source of the shock structures in pair-ion plasmas. Analytical and numerical analysis reveals that the wave exhibits the solitary wave in absence of collisions. In presence of collisions, the wave exhibits both oscillatory and monotonic shock structures depending on the balance between dispersion and dissipation of the system. For weak dissipation compare to dispersion, oscillatory shock structure is formed and in reverse case, nonlinear wave exhibits monotonic shock wave.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Gibson, W.C. Jordan, E.J. Lauer, Phys. Rev. Lett. 5, 141 (1960)

    Article  ADS  Google Scholar 

  2. C.M. Surko, M. Leventhal, A. Passner, Phys. Rev. Lett. 62, 901 (1989)

    Article  ADS  Google Scholar 

  3. E.P. Liang, S.C. Wilks, M. Tabak, Phys. Rev. Lett. 81, 4887 (1998)

    Article  ADS  Google Scholar 

  4. M. Amoretti, C. Amsler, G. Bonomi, A. Bouchta, P.D. Bowe, C. Carraro, C.L. Cesar, M. Charlton, M. Doser, V. Filippini, A. Fontana, Phys. Rev. Lett. 91, 055001 (2003)

    Article  ADS  Google Scholar 

  5. F.C. Michel, Theory of Neutron Star Magnetospheres (Chicago University Press, Chicago, 1991)

  6. P. Goldreich, W.H. Julian, Astrophys. J. 157 (1969) 869

    Article  ADS  Google Scholar 

  7. M.J. Rees, in The early universe, G.W. Gibbons, S.W. Hawking, S. Siklas (Cambridge University Press, Cambridge, 1983)

  8. H.R. Miller, P.J. Witta, in Active Galactic Nuclei (Springer-Verlag, Berlin, 1987), p. 202

  9. W. Oohara, R. Hatakeyama, Phys. Rev. Lett. 91, 205005 (2003)

    Article  ADS  Google Scholar 

  10. W. Oohara, D. Date, R. Hatakeyama, Phys. Rev. Lett. 95, 175003 (2005)

    Article  ADS  Google Scholar 

  11. W. Oohara, Y. Kuwabara, R. Hatakeyama, Phys. Rev. E 75, 056403 (2007)

    Article  ADS  Google Scholar 

  12. W. Oohara, R. Hatakeyama, Phys. Plasmas 14, 055704 (2007).

    Article  ADS  Google Scholar 

  13. R. Hatakeyama, W. Oohara, Phys. Scr. T116, 101 (2005)

    Article  ADS  Google Scholar 

  14. S. Ghosh, A. Adak, M. Khan, Phys. Plasmas 21, 012303 (2014)

    Article  ADS  Google Scholar 

  15. I. Kourakis, A. Esfandyari-Kalejahi, M. Mehdipoor, P.K. Shukla, Phys. Plasmas 13, 052117 (2006)

    Article  ADS  Google Scholar 

  16. A. Sikdar, A. Adak, S. Ghosh, M. Khan, Phys. Plasmas 25, 052303 (2018)

    Article  ADS  Google Scholar 

  17. H. Saleem, J. Vranjes, S. Poedts, Phys. Lett. A 350, 375 (2006)

    Article  ADS  Google Scholar 

  18. R. Saeed, A. Mushtaq, Phys. Plasmas 16, 032307 (2009)

    Article  ADS  Google Scholar 

  19. A. Adak, S. Ghosh, N. Chakrabarti, Phys. Plasmas 25, 102307 (2015)

    Article  ADS  Google Scholar 

  20. S. Mahmood, H. Ur-Rehman, Phys. Plasmas 17, 072305 (2010)

    Article  ADS  Google Scholar 

  21. W. Masood, S. Mahmood, N. Imtiaz, Phys. Plasmas 16, 122306 (2009)

    Article  ADS  Google Scholar 

  22. W. Masood, H. Rizvi, Phys. Plasmas 19, 012119 (2012)

    Article  ADS  Google Scholar 

  23. A. Adak, A. Sikdar, S. Ghosh, M. Khan, Phys. Plasmas 23, 062124 (2016)

    Article  ADS  Google Scholar 

  24. N. Chakrabarti, C. Maity, H. Schamel, Phys. Rev. Lett. 106, 145003 (2011)

    Article  ADS  Google Scholar 

  25. N. Chakrabarti, C. Maity, H. Schamel, Phys. Rev. E 88, 023102 (2013)

    Article  ADS  Google Scholar 

  26. M. Dutta, S. Ghosh, M. Khan, N. Chakrabarti, Phys. Plasmas 20, 122112 (2013)

    Article  ADS  Google Scholar 

  27. S. Jana, S. Ghosh, N. Chakrabarti, Phys. Plasmas 23, 072304 (2016)

    Article  ADS  Google Scholar 

  28. I. Kourakis, S. Sultana, F. Verheest, Astrophys. Space Sci. 338, 245 (2011)

    Article  ADS  Google Scholar 

  29. W. Malfliet, W. Hereman, Phys. Scr. 54, 563 (1996)

    Article  ADS  Google Scholar 

  30. M. Dutta, S. Ghosh, M. Khan, R. Roychoudhury, N. Chakrabarti, Phys. Plasmas 20, 012113 (2013)

    Article  ADS  Google Scholar 

  31. P.A. Sturrock, Astrophys. J. 164, 529 (1971)

    Article  ADS  Google Scholar 

  32. M.L. Burns, in Positron-electron pairs in astrophysics, edited by M.L. Burns, A.K. Harding, R. Ramaty (American Institute of Physics, New York, 1983)

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed equally to the paper.

Corresponding author

Correspondence to Ashish Adak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adak, A., Sengupta, S. Solitary and shock wave in magnetized collisional pair-ion plasmas. Eur. Phys. J. D 73, 197 (2019). https://doi.org/10.1140/epjd/e2019-100138-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2019-100138-0

Keywords

Navigation