Skip to main content
Log in

Retardation in electron dynamics simulations based on time-dependent density functional theory

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

When a molecular system is subjected to an external electric perturbation, originating from an electromagnetic wave or from a charged moving particle (in molecule-ion collisions), the electrons are the first particles to respond, on the attosecond timescale. Electron dynamics (ED) can be simulated by so-called real-time time-dependent density functional theory (RT-TDDFT). Within this framework, ED is driven by the electrostatic potential and by exchange-correlation potentials that fluctuate on the attosecond time scale. In vacuum the speed of light approaches 3 Å as−1. Therefore, when simulating ED in extended molecular systems the question of retardation in the propagation of the potentials has to be posed. In this contribution we investigate two types of retardation; the first one deals with retardation in the potential created by a collision with a charged projectile. This is done through the Liénard-Wiechert potential (LWP). The second one deals with retardation in the electrostatic interaction between the time-dependent electron density and its environment, here in the context of hybrid schemes coupling RT-TDDFT to polarizable Molecular Mechanics force fields (MMpol). We found that the latter retardation effects can be safely neglected because of the rapid damping vs. distance of the electric fields created by electrostatic dipole moments. This conclusion is also relevant for methodologies, coupling RT-TDDFT to implicit polarizable continuum models. On the other hand, our results recommend the use of the LWP for modelling molecule-ion collisions by first-principles simulations. Remarkably, ionization takes place on faster time scales when relativistic corrections are introduced even for incident kinetic energies of 0.1 MeV.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Wopperer, P.M. Dinh, P.G. Reinhard, E. Suraud, Phys. Rep. 562, 1 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  2. I. Tavernelli, Acc. Chem. Res. 48, 792 (2015)

    Article  Google Scholar 

  3. J. Theilhaber, Phys. Rev. B 46, 12990 (1992)

    Article  ADS  Google Scholar 

  4. K. Yabana, G.F. Bertsch, Phys. Rev. B 54, 4484 (1996)

    Article  ADS  Google Scholar 

  5. F. Calvayrac, P.G. Reinhard, E. Suraud, Phys. Rev. B 52, R17056 (1995)

    Article  ADS  Google Scholar 

  6. C.A. Ullrich, I.V. Tokatly, Phys. Rev. B 73, 235102 (2006)

    Article  ADS  Google Scholar 

  7. M. Thiele, E.K.U. Gross, S. Kümmel, Phys. Rev. Lett. 100, 153004 (2008)

    Article  ADS  Google Scholar 

  8. J.M. Escartín, M. Vincendon, P. Romaniello, P.M. Dinh, P.G. Reinhard, E. Suraud, J. Chem. Phys. 142, 084118 (2015)

    Article  ADS  Google Scholar 

  9. X. Wu, J.-M. Teuler, F. Cailliez, C. Clavaguéra, D.R. Salahub, A. de la Lande, J. Chem. Theory Comput. 13, 3985 (2017)

    Article  Google Scholar 

  10. G. Donati, A. Wildman, S. Caprasecca, D.B. Lingerfelt, F. Lipparini, B. Mennucci, X. Li, J. Phys. Chem. Lett. 8, 5283 (2017)

    Article  Google Scholar 

  11. P.M. Dinh, P.G. Reinhard, E. Suraud, Phys. Rep. 485, 43 (2010)

    Article  ADS  Google Scholar 

  12. A. Warshel, M. Levitt, J. Mol. Biol. 103, 227 (1976)

    Article  Google Scholar 

  13. M. Repisky, L. Konecny, M. Kadek, S. Komorovsky, O.L. Malkin, V.G. Malkin, K. Ruud, J. Chem. Theory Comput. 11, 980 (2015)

    Article  Google Scholar 

  14. G. Breit, Phys. Rev. 34, 553 (1929)

    Article  ADS  Google Scholar 

  15. R.P. Feynman, in The Feynman Lectures on Physics, edited by M. Gottlieb, R. Pfeiffer (California Institute of Technology, California, 1963, 2006, 2013, 2018), Vol. II

  16. C. Covington, K. Hartig, A. Russakoff, R. Kulpins, K. Varga, Phys. Rev. A 95, 052701 (2017)

    Article  ADS  Google Scholar 

  17. R. Nagano, K. Yabana, T. Tazawa, Y. Abe, J. Phys. B 32, L65 (1999)

    Article  ADS  Google Scholar 

  18. X. Hong, F. Wang, Y. Wu, B. Gou, J. Wang, Phys. Rev. A 93, 062706 (2016)

    Article  ADS  Google Scholar 

  19. A. Russakoff, Y. Li, S. He, K. Varga, J. Chem. Phys. 144, 204125 (2016)

    Article  ADS  Google Scholar 

  20. A. Parise, A. Alvarez-Ibarra, X. Wu, X. Zhao, J. Pilmé, A.d.l. Lande, J. Phys. Chem. Lett. 9, 844 (2018)

    Article  Google Scholar 

  21. I. Stetcu, C.A. Bertulani, A. Bulgac, P. Magierski, K.J. Roche, Phys. Rev. Lett. 114, 012701 (2015)

    Article  ADS  Google Scholar 

  22. C.K. Whitney, Hadronic J. 11, 257 (1988)

    MathSciNet  Google Scholar 

  23. P. Hohenberg, W. Kohn, Phys. Rev. B 136, 864 (1964)

    Article  ADS  Google Scholar 

  24. A. Castro, M.A.L. Marques, A. Rubio, J. Chem. Phys. 121, 3425 (2004)

    Article  ADS  Google Scholar 

  25. M. Hochbruck, A. Ostermann, Acta Numerica 19, 209 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  26. D. Kidd, C. Covington, K. Varga, Phys. Rev. E 96, 063307 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  27. A. Gómez Pueyo, M.A.L. Marques, A. Rubio, A. Castro, J. Chem. Theory Comput. 14, 3030 (2018)

    Google Scholar 

  28. W. Magnus, Commun. Pure Appl. Math. 7, 649 (1954)

    Article  Google Scholar 

  29. A.M. Köster, G. Geudtner, A. Alvarez-Ibarra, P. Calaminici, M.E. Casida, J. Carmona-Espindola, V. Dominguez, R. Flores-Moreno, G.U. Gamboa, A. Goursot, T. Heine, A. Ipatov, A. de la Lande, F. Janetzko, J.-M. del Campo, D. Mejia-Rodriguez, J. Reveles, J. Vasquez-Perez, A. Vela, B. Zuniga-Gutierrez, D.R. Salahub, deMon2k Version 5 (CInvestav, Mexico City, 2016)

  30. A.M. Köster, J.M.d. Campo, F. Janetzko, B. Zuniga-Gutierrez, J. Chem. Phys. 130, 114106 (2009)

    Article  ADS  Google Scholar 

  31. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes in Fortran 77 and 90, 2nd edn. (Cambridge University Press, Cambridge, 2001)

  32. P. Calaminici, A. Alvarez-Ibarra, D. Cruz-Olvera, V.-D. Dominguez-Soria, R. Flores-Moreno, G.U. Gamboa, G. Geudtner, A. Goursot, D. Mejía-Rodríguez, D.R. Salahub, B. Zuniga-Gutierrez, A. Köster, in Handbook of Computational Chemistry, edited by J. Leszczynski (Springer Netherlands, Dordrecht, 2016), p. 1

  33. B.I. Dunlap, N. Rösch, S.B. Trickey, Mol. Phys. 108, 3167 (2010)

    Article  ADS  Google Scholar 

  34. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  35. P. Calaminici, R. Flores-Moreno, A. Köster, Comput. Lett. 1, 164 (2005)

    Article  Google Scholar 

  36. A.M. Köster, R. Flores-Moreno, J.U. Reveles, J. Chem. Phys. 121, 681 (2004)

    Article  ADS  Google Scholar 

  37. J.W. Caldwell, P.A. Kollman, J. Phys. Chem. 99, 6208 (1995)

    Article  Google Scholar 

  38. Y. Hatano, A. Mozumder, in Charged Particle and Photon Interactions with Matter (CRC Press, Boca Raton, 2003)

  39. P. Krause, J.A. Sonk, H.B. Schlegel, J. Chem. Phys. 140, 174113 (2014)

    Article  ADS  Google Scholar 

  40. A. Sissay, P. Abanador, F. Mauger, M. Gaarde, K.J. Schafer, K. Lopata, J. Chem. Phys. 145, 094105 (2016)

    Article  ADS  Google Scholar 

  41. J. Carmona-Espíndola, J.L. Gázquez, A. Vela, S.B. Trickey, J. Chem. Phys. 142, 054105 (2015)

    Article  ADS  Google Scholar 

  42. A. Mozumder, in Charged Particle and Photon Interactions with Matter (CRC Press, Boca Raton, 2003)

  43. P.D. Nguyen, F. Ding, S.A. Fischer, W. Liang, X. Li, J. Phys. Chem. Lett. 3, 2898 (2012)

    Article  Google Scholar 

  44. S. Corni, S. Pipolo, R. Cammi, J. Phys. Chem. A 119, 5405 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aurélien de la Lande.

Additional information

Contribution to the Topical Issue “Atomic Cluster Collisions”, edited by Alexey Verkhovtsev, Andrey V. Solov’yov, Germán Rojas-Lorenzo, and Jesús Rubayo Soneira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Alvarez-Ibarra, A., Salahub, D.R. et al. Retardation in electron dynamics simulations based on time-dependent density functional theory. Eur. Phys. J. D 72, 206 (2018). https://doi.org/10.1140/epjd/e2018-90219-3

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2018-90219-3

Navigation