Skip to main content
Log in

Wade’s rules and the stability of AunGem clusters

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The properties of clusters formed from two connected Gem cage-like clusters, such as experimentally synthesized Au3Ge 5−18 , are examined using first-principles DFT methods. We focus particularly on AunGe q−12 formed from a Wade-rules stable Ge6 cluster, where n = 0–3 and q = 0,2. The geometries, electronic structure, and thermal excitations of these clusters are examined using the SIESTA code. Cluster stability is tested using short molecular dynamics simulations. We find that intercluster bridges between Ge m cages, formed of either Ge-Ge or Au-Ge bonds, can either bind a cluster together or tear it apart depending on the orientation of the bridging atoms with respect to the cages. The properties of neutrally charged AuGe12 and Au2Ge12 are characterized, and we observe that radially directed molecular orbitals stabilize AuGe12 while a geometric asymmetry stabilizes Au2Ge12 and Au3Ge18. A two-dimensional 2 [Au2Ge6] structure is examined and found to be more stable than other periodic [AunGe6] subunits. While no stable neutral isomers of Au3Ge12 are observed in our calculations, our work suggests additional charge stabilizes isomers of both Au2Ge12 and Au3Ge12.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.M. Guloy, R. Ramlau, Z. Tang, W. Schnelle, M. Baitinger, Y. Grin, Nature 443, 320 (2006)

    Article  ADS  Google Scholar 

  2. T.F. Fässler, Angew. Chem. Int. Ed. Engl. 46, 2572 (2007)

    Article  Google Scholar 

  3. F. Kiefer, A.J. Karttunen, M. Döblinger, T.F. Fässler, Chem. Mater. 23, 4578 (2011)

    Article  Google Scholar 

  4. A. Grüttner, R. Nesper, H.G. von Schnering, Angew. Chem. Int. Ed. Eng. 21, 912 (1982)

    Article  Google Scholar 

  5. J.V. Zaikina, E. Muthuswamy, K.I. Lilova, Z.M. Gibbs, M. Zeilinger, G.J. Snyder, T.F. Fässler, A. Navrotsky, S.M. Kauzlarich, Chem. Mater. 26, 3263 (2014)

    Article  Google Scholar 

  6. A. Mujica, A. Rubio, A. Muñoz, R.J. Needs, Rev. Mod. Phys. 75, 863 (2003)

    Article  ADS  Google Scholar 

  7. K. Koga, T. Ikeshoji, K.I. Sugawara, Phys. Rev. Lett. 92, 115507 (2004)

    Article  ADS  Google Scholar 

  8. F. Baletto, R. Ferrando, Rev. Mod. Phys. 77, 371 (2005)

    Article  ADS  Google Scholar 

  9. Y. Wang, S. Teitel, C. Dellago, Chem. Phys. Lett. 394, 257 (2004)

    Article  ADS  Google Scholar 

  10. C.L. Kuo, P. Clancy, J. Phys. Chem. B 109, 13743 (2005)

    Article  Google Scholar 

  11. A.S. Barnard, J. Phys. Chem. B 110, 24498 (2006)

    Article  Google Scholar 

  12. A.S. Barnard, N.P. Young, A.I. Kirkland, M.A. van Huis, H. Xu, ACS Nano 3, 1431 (2009)

    Article  Google Scholar 

  13. M. Durandurdu, Phys. Rev. B 76, 024102 (2007)

    Article  ADS  Google Scholar 

  14. R. Pöttgen, H. Borrmann, C. Felser, O. Jepsen, R. Henn, R. Kremer, A. Simon, J. Alloys Compd. 235, 170 (1996)

    Article  Google Scholar 

  15. Q. Lin, J.D. Corbett, J. Am. Chem. Soc. 134, 4877 (2012)

    Article  Google Scholar 

  16. J. Wu, J.L. Coffer, Adv. Mater. 20, 1571 (2008)

    Article  Google Scholar 

  17. R.S. Wagner, W.C. Ellis, Appl. Phys. Lett. 4, 89 (1964)

    Article  ADS  Google Scholar 

  18. D. Wang, H. Dai, Angew. Chem. 114, 4977 (2002)

    Article  Google Scholar 

  19. H. Okamoto, T.B. Massalski, Bull. Alloy Phase Diagrams 5, 601 (1984)

    Article  Google Scholar 

  20. S. Kodambaka, J. Tersoff, M.C. Reuter, F.M. Ross, Science 316, 729 (2007)

    Article  ADS  Google Scholar 

  21. S.A. Dayeh, S.T. Picraux, Nano Lett. 10, 4032 (2010)

    Article  ADS  Google Scholar 

  22. E. Sutter, P. Sutter, Nano Lett. 8, 411 (2008)

    Article  ADS  Google Scholar 

  23. A.D. Gamalski, C. Ducati, S. Hofmann, J. Phys. Chem. C 115, 4413 (2011)

    Article  Google Scholar 

  24. A.D. Gamalski, J. Tersoff, R. Sharma, C. Ducati, S. Hofmann, Phys. Rev. Lett. 108, 255702 (2012)

    Article  ADS  Google Scholar 

  25. B.J. Kim, C.Y. Wen, J. Tersoff, M.C. Reuter, E.A. Stach, F.M. Ross, Nano Lett. 12, 5867 (2012)

    Article  ADS  Google Scholar 

  26. S. Ryu, C.R. Weinberger, M.I. Baskes, W. Cai, Model. Simul. Mater. Sci. Eng. 17, 075008 (2009)

    Article  ADS  Google Scholar 

  27. A.M. Dongare, M. Neurock, L.V. Zhigilei, Phys. Rev. B 80, 184106 (2009)

    Article  ADS  Google Scholar 

  28. K. Reyes, P. Smereka, D. Nothern, J.M. Millunchick, S. Bietti, C. Somaschini, S. Sanguinetti, C. Frigeri, Phys. Rev. B 87, 165406 (2013)

    Article  ADS  Google Scholar 

  29. Z. Tan, S.M. Heald, M. Rapposch, C.E. Bouldin, J.C. Woicik, Phys. Rev. B 46, 9505 (1992)

    Article  ADS  Google Scholar 

  30. D. Sanchez-Portal, P. Ordejon, E. Artacho, J.M. Soler, Int. J. Quantum Chem. 65, 453 (1997)

    Article  Google Scholar 

  31. J.M. Soler, E. Artacho, J.D. Gale, A. García, J. Junquera, P. Ordejón, D. Sánchez-Portal, J. Phys. Condens. Matter 14, 2745 (2002)

    Article  ADS  Google Scholar 

  32. S.D. Li, Z.G. Zhao, H.S. Wu, Z.H. Jin, J. Chem. Phys. 115, 9255 (2001)

    Article  ADS  Google Scholar 

  33. W. Xu, Y. Zhao, Q. Li, Y. Xie, H.F. Schaefer III, Mol. Phys. 102, 579 (2004)

    Article  ADS  Google Scholar 

  34. S. Yoo, X.C. Zeng, J. Chem. Phys. 124, 184309 (2006)

    Article  ADS  Google Scholar 

  35. W. Qin, W.C. Lu, L.Z. Zhao, Q.J. Zang, G.J. Chen, C.Z. Wang, K.M. Ho, J. Chem. Phys. 131, 124507 (2009)

    Article  ADS  Google Scholar 

  36. R.B. King, I. Silaghi-Dumitrescu, A. Kun, Dalt. Trans. 3999 (2002)

  37. R.B. King, I. Silaghi-Dumitrescu, Inorg. Chem. 42, 6701 (2003)

    Article  Google Scholar 

  38. R. King, I. Silaghi-Dumitrescu, A. Lupan, Chem. Phys. 327, 344 (2006)

    Article  ADS  Google Scholar 

  39. R.B. King, I. Silaghi-Dumitrescu, M.M. Uta, Dalton Trans. 364–372 (2007)

  40. L.Z. Zhao, W.C. Lu, W. Qin, Q.J. Zang, C. Wang, K. Ho, Chem. Phys. Lett. 455, 225 (2008)

    Article  ADS  Google Scholar 

  41. J. Hunter, J. Fye, M. Jarrold, J. Bower, Phys. Rev. Lett. 73, 2063 (1994)

    Article  ADS  Google Scholar 

  42. O.R. Musaev, E.A. Sutter, J.M. Wrobel, M.B. Kruger, J. Nanoparticle Res. 14, 1 (2012)

    Article  Google Scholar 

  43. X.J. Li, K.H. Su, Theor. Chem. Acc. 124, 345 (2009)

    Article  Google Scholar 

  44. X. Li, K. Su, X. Yang, L. Song, L. Yang, Comput. Theor. Chem. 1010, 32 (2013)

    Article  ADS  Google Scholar 

  45. J.E. Kingcade, U.V. Choudary, K.A. Gingerich, Inorg. Chem. 18, 3094 (1979)

    Article  Google Scholar 

  46. N. Korber, Angew. Chem. Int. Ed. 48, 3216 (2009)

    Article  Google Scholar 

  47. T.B. Tai, M.T. Nguyen, J. Phys. Chem. A 115, 9993 (2011)

    Article  Google Scholar 

  48. C. Schenk, A. Schnepf, Angew. Chemie Int. Ed. 46, 5314 (2007)

    Article  Google Scholar 

  49. A. Spiekermann, S.D. Hoffmann, F. Kraus, T.F. Fässler, Angew. Chem. Int. Ed. Engl. 46, 1638 (2007)

    Article  Google Scholar 

  50. A. Spiekermann, S.D. Hoffmann, T.F. Fässler, I. Krossing, U. Preiss, Angew. Chem. Int. Ed. Engl. 46, 5310 (2007)

    Article  Google Scholar 

  51. S.C. Sevov, Intermetallic Compounds (John Wiley & Sons Ltd, Chichester, 2002), Vol. 3, Chap. 6

  52. G.S. Armatas, M.G. Kanatzidis, Nature 441, 1122 (2006)

    Article  ADS  Google Scholar 

  53. D. Sun, A.E. Riley, A.J. Cadby, E.K. Richman, S.D. Korlann, S.H. Tolbert, Nature 441, 1126 (2006)

    Article  ADS  Google Scholar 

  54. K. Wade, J. Chem. Soc. D Chem. Commun. 792 (1971)

  55. D.M.P. Mingos, Nature 236, 99 (1972)

    ADS  Google Scholar 

  56. A.J. Welch, Chem. Commun. 49, 3615 (2013)

    Article  Google Scholar 

  57. E. Zintl, Angew. Chemie 52, 1 (1939)

    Article  Google Scholar 

  58. R. Dronskowski, P.E. Bloechl, J. Phys. Chem. 97, 8617 (1993)

    Article  Google Scholar 

  59. N. Troullier, J. Martins, Phys. Rev. B 43, 1993 (1991)

    Article  ADS  Google Scholar 

  60. L. Kleinman, D. Bylander, Phys. Rev. Lett. 48, 1425 (1982)

    Article  ADS  Google Scholar 

  61. W.L. Kohn, L.J. Sham, Phys. Rev. 140, 1133 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  62. O. Sankey, D. Niklewski, Phys. Rev. B 40, 3979 (1989)

    Article  ADS  Google Scholar 

  63. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  64. J. Junquera, E. Artacho, E. Anglada, J.M. Soler, Phys. Rev. B 66, 3 (2002)

    Google Scholar 

  65. D. Sánchez-Portal, D.P.E. Artacho, J.D. Gale, J.M. Soler, SIESTA manuals, http//www.nnin.org/siesta-nnin

  66. E. Fernández, J. Soler, I. Garzón, L. Balbás, Phys. Rev. B 70 (2004)

  67. E. Fernández, J. Soler, L. Balbás, Phys. Rev. B 73, 1 (2006)

    Google Scholar 

  68. M. Torres, E. Fernández, L. Balbás, Phys. Rev. B 71, 155412 (2005)

    Article  ADS  Google Scholar 

  69. S. Nose, J. Chem. Phys. 81, 511 (1984)

    Article  ADS  Google Scholar 

  70. T.F. Fässler, H.J. Muhr, M. Hunziker, Eur. J. Inorg. Chem. 1998, 1433 (1998)

    Article  Google Scholar 

  71. P. Kircher, G. Huttner, K. Heinze, G. Renner, Angew. Chemie pp. 1664–1666 (1998)

  72. G. Renner, P. Kircher, G. Huttner, P. Rutsch, K. Heinze, Eur. J. Inorg. Chem. 2000, 879 (2000)

    Article  Google Scholar 

  73. A.F. Richards, H. Hope, P.P. Power, Angew. Chem. Int. Ed. 42, 4071 (2003)

    Article  Google Scholar 

  74. S. Ögüt, J.R. Chelikowsky, Phys. Rev. B 55, R4914 (1997)

    Article  ADS  Google Scholar 

  75. A. Ugrinov, S.C. Sevov, Comptes Rendus Chimie 8, 1878 (2005)

    Article  Google Scholar 

  76. A. Nienhaus, S.D. Hoffmann, T.F. Fässler, Z. Anorg. Allg. Chem. 632, 1752 (2006)

    Article  Google Scholar 

  77. A. Ugrinov, S.C. Sevov, J. Am. Chem. Soc. 124, 10990 (2002)

    Article  Google Scholar 

  78. P.D. Pancharatna, R. Hoffmann, Inorg. Chim. Acta 359, 3776 (2006)

    Article  Google Scholar 

  79. A.J. Karttunen, T.F. Fässler, M. Linnolahti, T.A. Pakkanen, ChemPhysChem 11, 1944 (2010)

    Google Scholar 

  80. S. Bulusu, S. Yoo, X.C. Zeng, J. Chem. Phys. 122, 164305 (2005)

    Article  ADS  Google Scholar 

  81. H. Schmidbaur, A. Schier, Chem. Soc. Rev. 37, 1931 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danielle McDermott.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McDermott, D., Newman, K.E. Wade’s rules and the stability of AunGem clusters. Eur. Phys. J. D 69, 90 (2015). https://doi.org/10.1140/epjd/e2015-50607-9

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2015-50607-9

Keywords

Navigation