Skip to main content
Log in

Stability of the Fe12O12 cluster

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Superexchange effects play an important role in the determination of crystal structures; however, there has been much less reported on how they determine the stability of clusters. Using evolutionary search strategies and DFT+U (density functional theory with the Hubbard U correction) calculations, we investigate the global minimum-energy structures of Fe12On clusters. Among predicted Fe12On clusters, a cage-shaped Fe12O12 cluster with unexpected stability was observed. In addition, the bare Fe12O12 cluster is shown to possess an extremely large energy gap (2.00 eV), which is greater than that of C60, Au20 and Al13−clusters. Using a Heisenberg model, we traced the origin of the unexpected stability of the bare Fe12O12 cluster to magnetic competition between the nearest-neighbor exchange constant J1 and the next-nearest neighbor exchange constant J2 that was induced by the superexchange interactions. The bare Fe12O12 cluster is thus a unique molecule that is stable and chemically inert.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Khanna, S. N.; Jena, P. Assembling crystals from clusters. Phys. Rev. Lett. 1992, 69, 1664–1667.

    Article  Google Scholar 

  2. Chang, C.-R.; Huang, Z.-Q.; Li, J. Hydrogenation of molecular oxygen to hydroperoxyl: An alternative pathway for O2 activation on nanogold catalysts. Nano Res. 2015, 8, 3737–3748.

    Article  Google Scholar 

  3. Lv, C. L.; Cheng, H.; He, W.; Shah, M. I. A.; Xu, C. Q.; Meng, X. J.; Jiao, L.; Wei, S. Q.; Li, J.; Liu, L. et al. Pd3 cluster catalysis: Compelling evidence from in operando spectroscopic, kinetic, and density functional theory studies. Nano Res. 2016, 9, 2544–2550.

    Article  Google Scholar 

  4. Qiao, B.; Liang, J.-X.; Wang, A. Q.; Xu, C.-Q.; Li, J.; Zhang, T.; Liu, J. J. Ultrastable single-atom gold catalysts with strong covalent metal-support interaction (CMSI). Nano Res. 2015, 8, 2913–2924.

    Article  Google Scholar 

  5. Long, B.; Tang, Y.; Li, J. New mechanistic pathways for CO oxidation catalyzed by single-atom catalysts: Supported and doped Au1/ThO2. Nano Res. 2016, 9, 3868–3880.

    Article  Google Scholar 

  6. Echt, O.; Sattler, K.; Recknagel, E. Magic numbers for sphere packings: Experimental verification in free xenon clusters. Phys. Rev. Lett. 1981, 47, 1121–1124.

    Article  Google Scholar 

  7. Knight, W.-D.; Clemenger, K.; de Heer, W. A.; Saunders, W. A.; Chou, M. Y.; Cohen, M. L. Electronic shell structure and abundances of sodium clusters. Phys. Rev. Lett. 1984, 52, 2141–2143.

    Article  Google Scholar 

  8. Reveles, J. U.; Clayborne, P. A.; Reber, A. C.; Khanna, S. N.; Pradhan, K.; Sen, P.; Pederson, M. R. Designer magnetic superatoms. Nat. Chem. 2009, 1, 310–315.

    Article  Google Scholar 

  9. Li, X.; Kuznetsov, A. E.; Zhang, H. F.; Boldyrev, A. I.; Wang, L. S. Observation of all-metal aromatic molecules. Science 2001, 291, 859–861.

    Article  Google Scholar 

  10. Yu, X. H.; Oganov, A. R.; Popov, I. A.; Boldyrev, A. I. d-AO spherical aromaticity in Ce6O8. J. Comput. Chem. 2016, 37, 103–109.

    Article  Google Scholar 

  11. Yu, X. H.; Oganov, A. R.; Popov, I. A.; Qian, G. R.; Boldyrev, A. I. Antiferromagnetic stabilization in the Ti8O12 cluster. Angew. Chem., Int. Ed. 2016, 55, 1699–1703.

    Article  Google Scholar 

  12. Shiroishi, H.; Oda, T.; Hamada, I.; Fujima, N. Structure and magnetism on iron oxide clusters FenOm (n = 1–5): Calculation from first principles. Eur. Phys. J. D: Atomic, Mol. Opt. Phys. 2003, 24, 85–88.

    Article  Google Scholar 

  13. Wu, H. B.; Desai, S. R.; Wang, L.-S. Observation and photoelectron spectroscopic study of novel mono- and diiron oxide molecules: FeOy (y = 1−4) and Fe2Oy (y = 1−5). J. Am. Chem. Soc. 1996, 118, 5296–5301.

    Article  Google Scholar 

  14. Wang, L.-S.; Wu, H. B.; Desai, S. R. Sequential oxygen atom chemisorption on surfaces of small iron clusters. Phys. Rev. Lett. 1996, 76, 4853–4856.

    Article  Google Scholar 

  15. Kirilyuk, A.; Fielicke, A.; Demyk, K.; von Helden, G.; Meijer, G.; Rasing, T. Ferrimagnetic cagelike Fe4O6 cluster: Structure determination from infrared dissociation spectroscopy. Phys. Rev. B 2010, 82, 020405.

    Article  Google Scholar 

  16. Reddy, B. V.; Khanna, S. N. Self-stimulated NO reduction and CO oxidation by iron oxide clusters. Phys. Rev. Lett. 2004, 93, 068301.

    Article  Google Scholar 

  17. Gutsev, G. L.; Khanna, S. N.; Rao, B. K.; Jena, P. FeO4: A unique example of a closed-shell cluster mimicking a superhalogen. Phys. Rev. A 1999, 59, 3681–3684.

    Article  Google Scholar 

  18. Jones, N. O.; Reddy, B. V.; Rasouli, F.; Khanna, S. N. Structural growth in iron oxide clusters: Rings, towers, and hollow drums. Phys. Rev. B 2005, 72, 165411.

    Article  Google Scholar 

  19. Ding, X.-L.; Xue, W.; Ma, Y.-P.; Wang, Z.-C.; He, S.-G. Density functional study on cage and noncage (Fe2O3)n clusters. J. Chem. Phys. 2009, 130, 014303.

    Article  Google Scholar 

  20. Erlebach, A.; Hühn, C.; Jana, R.; Sierka, M. Structure and magnetic properties of (Fe2O3)n clusters (n = 1–5). Phys. Chem. Chem. Phys. 2014, 16, 26421–26426.

    Article  Google Scholar 

  21. Gutsev, G. L.; Weatherford, C. A.; Jena, P.; Johnson, E.; Ramachandran, B. R. Competition between surface chemisorption and cage formation in Fe12O12 clusters. Chem. Phys. Lett. 2013, 556, 211–216.

    Article  Google Scholar 

  22. Mejía-López, A.; Mazo-Zuluaga, J.; Mejía-López, J. Sequential oxygen chemisorption on Fe13 clusters: From first-principles to practical insights. J. Phys.:Condens. Matter 2016, 28, 485002.

    Google Scholar 

  23. Palotás, K.; Andriotis, A. N.; Lappas, A. Structural, electronic, and magnetic properties of nanometer-sized iron-oxide atomic clusters: Comparison between GGA and GGA+U approaches. Phys. Rev. B 2010, 81, 075403.

    Article  Google Scholar 

  24. Oganov, A. R.; Glass, C. W. Crystal structure prediction using ab initio evolutionary techniques: Principles and applications. J. Chem. Phys. 2006, 124, 244704.

    Article  Google Scholar 

  25. Zhang, W. W.; Oganov, A. R.; Goncharov, A. F.; Zhu, Q.; Boulfelfel, S. E.; Lyakhov, A. O.; Stavrou, E.; Somayazulu, M.; Prakapenka, V. B.; Konôpková, Z. Unexpected stable stoichiometries of sodium chlorides. Science 2013, 342, 1502–1505.

    Article  Google Scholar 

  26. Zhou, X.-F.; Dong, X.; Oganov, A. R.; Zhu, Q.; Tian, Y. J.; Wang, H.-T. Semimetallic two-dimensional boron allotrope with massless dirac fermions. Phys. Rev. Lett. 2014, 112, 085502.

    Article  Google Scholar 

  27. Oganov, A. R.; Lyakhov, A. O.; Valle, M. How evolutionary crystal structure prediction works—and why. Acc. Chem. Res. 2011, 44, 227–237.

    Article  Google Scholar 

  28. Lyakhov, A. O.; Oganov, A. R.; Stokes, H. T.; Zhu, Q. New developments in evolutionary structure prediction algorithm uspex. Comput. Phys. Commun. 2013, 184, 1172–1182.

    Article  Google Scholar 

  29. Zhu, Q.; Sharma, V.; Oganov, A. R.; Ramprasad, R. Predicting polymeric crystal structures by evolutionary algorithms. J. Chem. Phys. 2014, 141, 154102.

    Article  Google Scholar 

  30. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

    Article  Google Scholar 

  31. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    Article  Google Scholar 

  32. Dudarev, S. L.; Botton, G. A.; Savrasov, S. Y.; Humphreys, C. J.; Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Phys. Rev. B 1998, 57, 1505–1509.

    Article  Google Scholar 

  33. Yu, X. H.; Wang, S.-G.; Li, Y.-W.; Wang, J. G.; Jiao, H. J. Single gold atom adsorption on the Fe3O4(111) surface. J. Phys. Chem. C 2012, 116, 10632–10638.

    Article  Google Scholar 

  34. Yu, X. H.; Huo, C.-F.; Li, Y.-W.; Wang, J. G.; Jiao, H. J. Fe3O4 surface electronic structures and stability from GGA+U. Surf. Sci. 2012, 606, 872–879.

    Article  Google Scholar 

  35. Kulik, H. J.; Cococcioni, M.; Scherlis, D. A.; Marzari, N. Density functional theory in transition-metal chemistry: A self-consistent Hubbard U approach. Phys. Rev. Lett. 2006, 97, 103001.

    Article  Google Scholar 

  36. Yu, X. H.; Zhang, X. M.; Jin, L. X.; Feng, G. CO adsorption, oxidation and carbonate formation mechanisms on Fe3O4 surfaces. Phys. Chem. Chem. Phys. 2017, 19, 17287–17299.

    Article  Google Scholar 

  37. Yu, X. H.; Zhang, X. M.; Wang, S. G.; Feng, G. Adsorption of Aun (n = 1–4) clusters on Fe3O4(001) B-termination. RSC Adv. 2015, 5, 45446–45453.

    Article  Google Scholar 

  38. Yu, X. H.; Zhang, X. M.; Wang, S. G. High coverage hydrogen adsorption on the Fe3O4(110) surface. Appl. Surf. Sci. 2015, 353, 973–978.

    Article  Google Scholar 

  39. Bhattacharya, S.; Levchenko, S. V.; Ghiringhelli, L. M.; Scheffler, M. Stability and metastability of clusters in a reactive atmosphere: Theoretical evidence for unexpected stoichiometries of MgmOx. Phys. Rev. Lett. 2013, 111, 135501.

    Article  Google Scholar 

  40. Yu, X. H.; Zhang, X. M.; Wang, H. T.; Wang, Z. Y.; Feng, G. High-coverage H2 adsorption on the reconstructed Cu2O(111) surface. J. Phys. Chem. C 2017, 121, 22081–22091.

    Article  Google Scholar 

  41. Yu, X. H.; Zhang, X. M. High coverage water adsorption on CuO(011) surface. Phys. Chem. Chem. Phys. 2017, 19, 18652–18659.

    Article  Google Scholar 

  42. Yu, X. H.; Zhang, X. M.; Wang, S. G.; Feng, G. A computational study on water adsorption on Cu2O(111) surfaces: The effects of coverage and oxygen defect. Appl. Surf. Sci. 2015, 343, 33–40.

    Article  Google Scholar 

  43. Stull, D. R.; Prophet, H. Janaf thermochemical tables; U. S. EPO: Washington, DC, 1971.

    Google Scholar 

  44. Yu, X. H.; Zhang, X. M.; Wang, H. T.; Feng, G. High coverage water adsorption on the CuO(111) surface. Appl. Surf. Sci. 2017, 425, 803–810.

    Article  Google Scholar 

  45. de Oliveira, O. V.; Pires, J. M.; Neto, A. C.; Divino dos Santos, J. Computational studies of the Ca12O12, Ti12O12, Fe12O12 and Zn12O12 nanocage clusters. Chem. Phys. Lett. 2015, 634, 25–28.

    Article  Google Scholar 

  46. Gong, X. G.; Kumar, V. Enhanced stability of magic clusters: A case study of icosahedral Al12X, X=B, Al, Ga, C, Si, Ge, Ti, As. Phys. Rev. Lett. 1993, 70, 2078–2081.

    Article  Google Scholar 

  47. Bergeron, D. E.; Castleman, A. W.; Morisato, T.; Khanna, S. N. Formation of Al13I: Evidence for the superhalogen character of Al13. Science 2004, 304, 84–87.

    Article  Google Scholar 

  48. Li, J.; Li, X.; Zhai, H.-J.; Wang, L.-S. Au20: A tetrahedral cluster. Science 2003, 299, 864–867.

    Article  Google Scholar 

  49. Wang, X. B.; Ding, C. F.; Wang, L. S. High resolution photoelectron spectroscopy of C60 . J. Chem. Phys. 1999, 110, 8217–8220.

    Article  Google Scholar 

  50. Kroto, H. W.; Heath, J. R.; O’Brien, S. C.; Curl, R. F.; Smalley, R. E. C60: Buckminsterfullerene. Nature 1985, 318, 162–163.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 11474004), the National Science Foundation of Henan Province (No. 162300410001) and the Natural Science Foundation of Shaanxi University of Technology (No. SLGQD2017-13). Calculations were performed on Rurik supercomputer at Moscow Institute of Physics and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohu Yu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, X., Zhang, X. & Yan, XW. Stability of the Fe12O12 cluster. Nano Res. 11, 3574–3581 (2018). https://doi.org/10.1007/s12274-017-1923-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1923-6

Keywords

Navigation