Skip to main content
Log in

Molecular dynamics study of the stability of a carbon nanotube atop a catalytic nanoparticle

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The stability of a single-walled carbon nanotube placed on top of a catalytic nickel nanoparticle is investigated by means of molecular dynamics simulations. As a case study, we consider the (12,0) nanotube consisting of 720 carbon atoms and the icosahedral Ni309 cluster. An explicit set of constant-temperature simulations is performed in order to cover a broad temperature range from 400 to 1200 K, at which a successful growth of carbon nanotubes has been achieved experimentally by means of chemical vapor deposition. The stability of the system depending on parameters of the involved interatomic interactions is analyzed. It is demonstrated that different scenarios of the nanotube dynamics atop the nanoparticle are possible depending on the parameters of the Ni-C potential. When the interaction is weak the nanotube is stable and resembles its highly symmetric structure, while an increase of the interaction energy leads to the abrupt collapse of the nanotube in the initial stage of simulation. In order to validate the parameters of the Ni-C interaction utilized in the simulations, DFT calculations of the potential energy surface for carbon-nickel compounds are performed. The calculated dissociation energy of the Ni-C bond is in good agreement with the values, which correspond to the case of a stable and not deformed nanotube simulated within the MD approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Iijima, Nature 354, 56 (1991)

    Article  ADS  Google Scholar 

  2. C. Journet et al., Nature 388, 756 (1997)

    Article  ADS  Google Scholar 

  3. A. Thess et al., Science 273, 483 (1996)

    Article  ADS  Google Scholar 

  4. M. Terrones et al., Nature 388, 52 (1997)

    Article  ADS  Google Scholar 

  5. Y.C. Choi et al., Appl. Phys. Lett. 76, 2367 (2000)

    Article  ADS  Google Scholar 

  6. H. Li, C. Shi, X. Du, C. He, J. Li, N. Zhao, Mater. Lett. 62, 1472 (2008)

    Article  Google Scholar 

  7. D. Yuan et al., Nano Lett. 8, 2576 (2008)

    Article  ADS  Google Scholar 

  8. J. Kang, J. Li, N. Zhao, X. Du, C. Shi, P. Nash, J. Mater. Sci. 44, 2471 (2009)

    Article  ADS  Google Scholar 

  9. P. Diao, Z. Liu, Adv. Mater. 22, 1430 (2010)

    Article  Google Scholar 

  10. A. Martinez-Limia, J. Zhao, P.B. Balbuena, J. Mol. Model. 13, 595 (2007)

    Article  Google Scholar 

  11. P.J.F. Harris, Carbon 45, 229 (2007)

    Article  Google Scholar 

  12. J. Kang, J. Li, X. Du, C. Shi, N. Zhao, P. Nash, Mater. Sci. Eng. A 475, 136 (2008)

    Article  Google Scholar 

  13. R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998)

  14. A.R. Harutyunyan, T. Tokune, E. Mora, Appl. Phys. Lett. 87, 051919 (2005)

    Article  ADS  Google Scholar 

  15. H. Kanzow, A. Ding, Phys. Rev. B 60, 11180 (1999)

    Article  ADS  Google Scholar 

  16. J. Gavillet, A. Loiseau, C. Journet, F. Willaime, F. Ducastelle, J.-C. Charlier, Phys. Rev. Lett. 87, 275504 (2001)

    Article  ADS  Google Scholar 

  17. F. Ding, A. Rosen, K. Bolton, J. Chem. Phys. 121, 2775 (2004)

    Article  ADS  Google Scholar 

  18. H. Cui, O. Zhou, B.R. Stoner, J. Appl. Phys. 88, 6072 (2000)

    Article  ADS  Google Scholar 

  19. G.-H. Jeong, N. Satake, T. Kato, T. Hirata, R. Hatakeyama, K. Tohji, Jpn J. Appl. Phys. 42, L1340 (2003)

    Article  ADS  Google Scholar 

  20. P. Pawlow, Z. Phys. Chem. 65, 1 (1909)

    Google Scholar 

  21. Y. Qi, T. Çağin, W.L. Johnson, W.A. Goddard III, J. Chem. Phys. 115, 385 (2001)

    Article  ADS  Google Scholar 

  22. A. Lyalin, A. Hussien, A.V. Solov’yov, W. Greiner, Phys. Rev. B 79, 165403 (2009)

    Article  ADS  Google Scholar 

  23. A.V. Yakubovich, G.B. Sushko, S. Schramm, A.V. Solov’yov, Phys. Rev. B 88, 035438 (2013)

    Article  ADS  Google Scholar 

  24. S. Hofmann, C. Ducati, J. Robertson, B. Kleinsorge, Appl. Phys. Lett. 83, 135 (2003)

    Article  ADS  Google Scholar 

  25. N.G. Shang, Y.Y. Tan, V. Stolojan, P. Papakonstantinou, S.R.P. Silva, Nanotechnology 21, 505604 (2010)

    Article  ADS  Google Scholar 

  26. M. He et al., Nano Res. 4, 334 (2011)

    Article  ADS  Google Scholar 

  27. N. Halonen et al., Phys. Stat. Sol. B 248, 2500 (2011)

    Article  ADS  Google Scholar 

  28. S. Irle, Y. Ohta, Y. Okamoto, A.J. Page, Y. Wang, K. Morokuma, Nano Res. 2, 755 (2009)

    Article  Google Scholar 

  29. Y. Ohta, Y. Okamoto, S. Irle, K. Morokuma, Carbon 47, 1270 (2009)

    Article  Google Scholar 

  30. Y. Shibuta, S. Maruyama, Chem. Phys. Lett. 382, 381 (2003)

    Article  ADS  Google Scholar 

  31. J. Zhao, A. Martinez-Limia, P.B. Balbuena, Nanotechnology 16, S575 (2005)

    Article  ADS  Google Scholar 

  32. J. Tersoff, Phys. Rev. B 37, 6991 (1988)

    Article  ADS  Google Scholar 

  33. D.W. Brenner, Phys. Rev. B 42, 9458 (1990)

    Article  ADS  Google Scholar 

  34. D.W. Brenner, Phys. Rev. B 46, 1948 (1992)

    Article  ADS  Google Scholar 

  35. R.E. Smalley et al., J. Am. Chem. Soc. 128, 15824 (2006)

    Article  Google Scholar 

  36. Y. Ohta, Y. Okamoto, S. Irle, K. Morokuma, ACS Nano 2, 1437 (2008)

    Article  Google Scholar 

  37. I.A. Solov’yov, M. Mathew, A.V. Solov’yov, W. Greiner, Phys. Rev. E 78, 051601 (2008)

    Article  ADS  Google Scholar 

  38. W. Humphrey, A. Dalke, K. Schulten, J. Mol. Graph. 14, 33 (1996)

    Article  Google Scholar 

  39. I.A. Solov’yov, A.V. Yakubovich, P.V. Nikolaev, I. Volkovets, A.V. Solov’yov, J. Comput. Chem. 33, 2412 (2012)

    Article  Google Scholar 

  40. http://www.mbnexplorer.com/

  41. I.A. Solov’yov, A.V. Solov’yov, W. Greiner, A. Koshelev, A. Shutovich, Phys. Rev. Lett. 90, 053401 (2003)

    Article  ADS  Google Scholar 

  42. J. Geng, I.A. Solov’yov, D.G. Reid, P. Skelton, A.E.H. Wheatley, A.V. Solovyov, B.F.G. Johnson, Phys. Rev. B 81, 214114 (2010)

    Article  ADS  Google Scholar 

  43. A.V. Verkhovtsev, A.V. Yakubovich, G.B. Sushko, M. Hanauske, A.V. Solov’yov, Comput. Mater. Sci. 76, 20 (2013)

    Article  Google Scholar 

  44. A.V. Yakubovich, A.V. Verkhovtsev, M. Hanauske, A.V. Solov’yov, Comput. Mater. Sci. 76, 60 (2013)

    Article  Google Scholar 

  45. G.B. Sushko, V.G. Bezchastnov, I.A. Solov’yov, A.V. Korol, W. Greiner, A.V. Solov’yov, J. Comput. Phys. 252, 404 (2013)

    Article  ADS  Google Scholar 

  46. V.V. Dick, I.A. Solov’yov, A.V. Solov’yov, Phys. Rev. B 84, 115408 (2011)

    Article  ADS  Google Scholar 

  47. I.A. Solov’yov, A.V. Solov’yov, N. Kébaili, A. Masson, C. Bréchignac, Phys. Stat. Sol. B 251, 609 (2013)

    Article  Google Scholar 

  48. M. Panshenskov, I.A. Solov’yov, A.V. Solov’yov, J. Comput. Chem. 35, 1317 (2014)

    Article  Google Scholar 

  49. M.W. Finnis, J.E. Sinclair, Philos. Mag. A 50, 45 (1984)

    Article  ADS  Google Scholar 

  50. G.B. Sushko, A.V. Verkhovtsev, A.V. Yakubovich, S. Schramm, A.V. Solov’yov, J. Phys. Chem. A, DOI: 10.1021/jp503777q

  51. A.V. Verkhovtsev, G.B. Sushko, A.V. Yakubovich, A.V. Solov’yov, Comput. Theor. Chem. 1021, 101 (2013)

    Article  Google Scholar 

  52. G.B. Sushko, A.V. Verkhovtsev, A.V. Solov’yov, J. Phys. Chem. A, DOI: 10.1021/jp501723w

  53. R.P. Gupta, Phys. Rev. B. 23, 6265 (1981)

    Article  ADS  Google Scholar 

  54. A.P. Sutton, J. Chen, Philos. Mag. Lett. 61, 139 (1990)

    Article  ADS  Google Scholar 

  55. M.S. Daw, S.M. Foiles, M.I. Baskes, Mater. Sci. Rep. 9, 251 (1993)

    Article  Google Scholar 

  56. H. Rafii-Tabar, G.A. Mansoori, in Encyclopedia of Nanoscience and Nanotechnology, edited by H.S. Nalwa (American Scientific Publishers, Valencia, 2004), Vol. 4, pp. 231–248

  57. F. Cleri, V. Rosato, Phys. Rev. B 48, 22 (1993)

    Article  ADS  Google Scholar 

  58. V. Rosato, M. Guellope, B. Legrand, Philos. Mag. A 59, 321 (1989)

    Article  ADS  Google Scholar 

  59. J.H. Li, X.D. Dai, T.L. Wang, B.X. Liu, J. Phys.: Condens. Matter 17, 086228 (2007)

    ADS  Google Scholar 

  60. M.S. Daw, M.I. Baskes, Phys. Rev. Lett. 50, 1285 (1983)

    Article  ADS  Google Scholar 

  61. M.S. Daw, M.I. Baskes, Phys. Rev. B 29, 6443 (1984)

    Article  ADS  Google Scholar 

  62. D. Tománek, A.A. Aligia, C.A. Balseiro, Phys. Rev. B 32, 5051 (1985)

    Article  ADS  Google Scholar 

  63. W.S. Lai, B.X. Liu, J. Phys.: Condens. Matter 12, L53 (2000)

    ADS  Google Scholar 

  64. Y. Yamaguchi, S. Maruyama, Eur. Phys. J. D 9, 385 (1999)

    Article  ADS  Google Scholar 

  65. Y. Shibuta, S. Maruyama, Comput. Mater. Sci. 39, 842 (2007)

    Article  Google Scholar 

  66. J.H. Ryu, H.Y. Kim, D.H. Kim, D.H. Seo, H.M. Lee, J. Phys. Chem. C 114, 2022 (2010)

    Article  Google Scholar 

  67. Z.-C. Lin, J.-C. Huang, Y.-R. Jeng, J. Mater. Process. Technol. 192-193, 27 (2007)

    Article  Google Scholar 

  68. F. Ding, K. Bolton, A. Rosén, J. Vac. Sci. Technol. A 22, 1471 (2004)

    Article  ADS  Google Scholar 

  69. A.D. Becke, J. Chem. Phys. 98, 5648 (1993)

    Article  ADS  Google Scholar 

  70. J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Phys. Rev. B 46, 6671 (1992)

    Article  ADS  Google Scholar 

  71. R.A. Kendall, T.H. Dunning Jr., R.J. Harrison, J. Chem. Phys. 96, 6796 (1992)

    Article  ADS  Google Scholar 

  72. N.B. Balabanov, K.A. Peterson, J. Chem. Phys. 123, 064107 (2005)

    Article  ADS  Google Scholar 

  73. M.J. Frisch et al., Gaussian 09, Revision A.01 (Gaussian, Wallingford CT, 2009)

  74. O.I. Obolensky, V.V. Semenikhina, A.V. Solov’yov, W. Greiner, Int. J. Quantum Chem. 107, 1335 (2007)

    Article  ADS  Google Scholar 

  75. A.D. MacKerell Jr., et al., J. Phys. Chem. B 102, 3586 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey V. Verkhovtsev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verkhovtsev, A.V., Schramm, S. & Solov’yov, A.V. Molecular dynamics study of the stability of a carbon nanotube atop a catalytic nanoparticle. Eur. Phys. J. D 68, 246 (2014). https://doi.org/10.1140/epjd/e2014-50371-4

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2014-50371-4

Keywords

Navigation