Skip to main content
Log in

Electronic structure, magnetic and optical properties of the Ti2RuAl full-Heusler compound by a first-principles study

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Using the first-principles calculations based on density functional theory (DFT) within the generalized gradient approximation (GGA), Ti2RuAl full-Heusler compound is studied. The electronic structure, magnetic, and optical properties of Ti2-based full Heusler compound Ti2RuAl are calculated and analyzed using the Wien2k package. The CuHg2Ti-type structure is found to be more favorable than the AlCu2Mn-type structure for this compound. The Ti2RuAl Heusler compound exhibits a ferrimagnetic half-metallic behavior with the total magnetic moment of 1 µB at the equilibrium lattice constant 6.24 Å. The total magnetic moment of Ti2RuAl is in agreement with the Slater-Pauling rule mtot = ztot–18 and hence has integral magnetic moments which is due to 100% spin polarization at Fermi energy. Ti2RuAl has an energy gap in the spin-down channel of 0.229 eV. This compound keeps a 100% of spin polarization for lattice constant change in the range of 5.8–6.5 Å. The Curie temperature of Ti2RuAl is estimated to be 451 K using the mean field approximation (MFA). In addition, optical properties like dielectric function, reflectivity, energy loss function, absorption coefficient, and optical conductivity are calculated.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The datasets generated during the current study are available from the corresponding author on reasonable request.].

References

  1. G.A. Prinz, Magnetoelectronics. Science 282, 1660–1663 (1998). https://doi.org/10.1126/science.282.5394.1660

    Article  Google Scholar 

  2. K. Özdoğan, I. Galanakis, E. Şaşıoğlu, B. Aktaş, Defects-driven appearance of half-metallic ferrimagnetism in Co–Mn-based Heusler alloys. Solid State Commun. 142, 492–497 (2007). https://doi.org/10.1016/j.ssc.2007.04.013

    Article  ADS  Google Scholar 

  3. R.A. de Groot, F.M. Mueller, P.G. van Engen, K.H. Buschow, New class of materials: half-metallic ferromagnets. J. Phys. Rev. Lett. 50, 2024–2027 (1983). https://doi.org/10.1103/PhysRevLett.50.2024

    Article  ADS  Google Scholar 

  4. J. Kübler, A.R. Williams, C.B. Sommers, Fortmation and coupling of magnetic moments in Heusler alloys. Phys. Rev. B 28, 1745–1755 (1983). https://doi.org/10.1103/PhysRevB.28.1745

    Article  ADS  Google Scholar 

  5. S. Ishida, S. Fujii, S. Kashiwagi, S. Asano, Search for half-metallic compounds in Co2MnZ (Z=IIIb, IVb, Vb element). J. Phys. Soc. Jpn. 64, 2152–2157 (1995). https://doi.org/10.1143/JPSJ.64.2152

    Article  ADS  Google Scholar 

  6. I. Galanakis, P.H. Dederichs, N. Papanikolaou, Slater-Pauling behavior and origin of the half-metallicity of the full-Heusler alloys. Phys. Rev. B 66, 174429-1–174439 (2002). https://doi.org/10.1103/PhysRevB.66.174429

    Article  Google Scholar 

  7. S. Picozzi, A. Continenza, A.J. Freeman, Co2MnX (X=Si, Ge, Sn) Heusler compounds: An ab initio study of their structural, electronic, and magnetic properties at zero and elevated pressure. Phys. Rev. B 66, 094421-1–94429 (2002). https://doi.org/10.1103/PhysRevB.66.094421

    Article  Google Scholar 

  8. Y. Miura, K. Nagao, M. Shirai, Atomic disorder effects on half-metallicity of the full-Heusler alloys Co2(Cr1-xFex)Al: a first-principles study. Phys. Rev. B 69, 144413-1–144417 (2004). https://doi.org/10.1103/PhysRevB.69.144413

    Article  Google Scholar 

  9. G. H. Fecher, H.C. Kandpal, S. Wurmehl, C. Felser, G. Schönhense, Slater-Pauling rule and Curie temperature of Co2-based Heusler compounds, J. Appl. Phys. 99 (2006) 08J106-1–3. https://doi.org/10.1063/1.2167629.

  10. X.Q. Chen, R. Podloucky, P. Rogl, Ab initio prediction of half-metallic properties for the ferromagnetic Heusler alloys Co2Msi (M=Ti, V, Cr). J. Appl. Phys. 100, 113901-1–113904 (2006). https://doi.org/10.1063/1.2374672

    Article  Google Scholar 

  11. R. Weht, W.E. Pickett, Half-metallic ferrimagnetism in Mn2VAl. Phys. Rev. B 60, 13006–13010 (1999). https://doi.org/10.1103/PhysRevB.60.13006

    Article  ADS  Google Scholar 

  12. L. Feng, C. Tang, S. Wang, W. He, Half-metallic full-Heusler compound Ti2NiAl: a first-principles study. J. Alloys Compd. 509, 5187–5189 (2011). https://doi.org/10.1016/j.jallcom.2011.02.002

    Article  Google Scholar 

  13. S. Kervan, N. Kervan, Spintronic properties of the Ti2CoB Heusler compound by density functional theory. Solid State Commun. 151, 1162–1164 (2011). https://doi.org/10.1016/j.ssc.2011.05.008

    Article  ADS  Google Scholar 

  14. E. Bayar, N. Kervan, S. Kervan, Half-metallic ferrimagnetism in the Ti2CoAl Heusler compound. J. Magn. Magn. Mater. 323, 2945–2948 (2011). https://doi.org/10.1016/j.jmmm.2011.05.062

    Article  ADS  Google Scholar 

  15. N. Kervan, S. Kervan, A first-principle study of half-metallic ferrimagnetism in the Ti2CoGa Heusler compound. J. Magn. Magn. Mater. 324, 645–648 (2012). https://doi.org/10.1016/j.jmmm.2011.09.003

    Article  ADS  Google Scholar 

  16. S. Kervan, N. Kervan, Half-metallic ferromagnetism in the Ti2CoGe heusler compound. J. Elec. Mater. 41, 1978–1981 (2012). https://doi.org/10.1007/s11664-012-1968-y

    Article  ADS  Google Scholar 

  17. X. Yang, B. Wu, S. Zhang, An Investigation of half-metallic ferromagnets behavior in Hg2CuTi-type Heusler alloy Ti2FeAl by using GGA. Adv. Mater. Res. 535, 1291–1294 (2012). https://doi.org/10.4028/www.scientific.net/AMR.535-537.1291

    Article  Google Scholar 

  18. N. Kervan, S. Kervan, Half-metallic properties of Ti2FeSi full-Heusler compound. J. Phys. Chem. Solids 72, 1358–1361 (2011). https://doi.org/10.1016/j.jpcs.2011.08.017

    Article  ADS  Google Scholar 

  19. A. Birsan, P. Palade, Band structure calculations of Ti2FeSn: a new half-metallic compound. Intermetallics 36, 86–89 (2013). https://doi.org/10.1016/j.intermet.2013.01.005

    Article  Google Scholar 

  20. X.P. Wei, J.B. Deng, G.Y. Mao, S.B. Chu, X.R. Hu, Half-metallic properties for the Ti2YZ (Y=Fe Co, Ni, Z=Al, Ga, In) Heusler alloys: a first-principles study. Intermetallics 29, 86–91 (2012). https://doi.org/10.1016/j.intermet.2012.05.002

    Article  Google Scholar 

  21. Q.L. Fang, J.M. Zhang, K.W. Xu, Magnetic properties and origin of the half-metallicity of Ti2MnZ (Z=Al, Ga, In, Si, Ge, Sn) Heusler alloys with the Hg2CuTi-type structure. J. Magn. Magn. Mater. 349, 104–108 (2014). https://doi.org/10.1016/j.jmmm.2013.08.030

    Article  ADS  Google Scholar 

  22. L. Zhang, X.T. Wang, H. Rozale, J. Lu, L. Wang, Half-metallicity and tetragonal deformation of Ti2RhAl, Ti2RhGa, and Ti2RhIn: A First-principle study. J. Supercond. Nov. Magn. 29, 349–356 (2016). https://doi.org/10.1007/s10948-015-3258-4

    Article  Google Scholar 

  23. F. Taşkın, M. Atiş, O. Canko, S. Kervan, N. Kervan, Half-metallicity in the inverse Heusler Ti2RuSn alloy: A First-principles prediction. J. Magn. Magn. Mater. 426, 473–478 (2017). https://doi.org/10.1016/j.jmmm.2016.06.071

    Article  ADS  Google Scholar 

  24. V. Sharma, G. Pilania, Electronic, magnetic, optical and elastic properties of Fe2YAl (Y=Ti, V and Cr) using first principles methods. J. Magn. Magn. Mater. 339, 142–150 (2013). https://doi.org/10.1016/j.jmmm.2013.03.008

    Article  ADS  Google Scholar 

  25. S.A.A. Emami, A. Amirabadizadeh, Z. Nourbakhsh, S.M. Baizaee, S.M.A. Sadr, Study of the structural, electronic, magnetic, and optical properties of Mn2ZrGa full-Heusler alloy: first-principles calculations. J. Supercond. Nov. Magn. 31, 127–134 (2018). https://doi.org/10.1007/s10948-017-4174-6

    Article  Google Scholar 

  26. J.M. Zhang, Y. Yang, Z.Y. Feng, X.M. Wei, Y.H. Huang, First-principles study on the structural, electronic and optical properties in bulk and surfaces of full-Heusler alloy X2CoGa (X=Ti, Hf), Appl. Phys. A 126 (2020) 338–1–14. https://doi.org/10.1007/s00339-020-03515-4.

  27. H.C. Kandpal, G.H. Fecher, C. Felser, Calculated electronic and magnetic properties of the half-metallic, transition metal based Heusler compounds. J. Phys. D: Appl. Phys. 40, 1507–1523 (2007). https://doi.org/10.1088/0022-3727/40/6/S01

    Article  ADS  Google Scholar 

  28. W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965). https://doi.org/10.1103/PhysRev.140.A1133

    Article  ADS  MathSciNet  Google Scholar 

  29. D. Singh, Planes Waves (Kluwer Academic Publishers, Boston, Dortrecht, London, Pseudo-Potentials and the LAPW Method, 1994)

    Google Scholar 

  30. P. Blaha, K. Schwarz, F. Tran, R. Laskowski, G.K.H. Madsen, L.D. Marks, WIEN2k: An APW+lo program for calculating the properties of solids. J. Chem. Phys. 152, 074101 (2020). https://doi.org/10.1063/1.5143061

    Article  ADS  Google Scholar 

  31. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865

    Article  ADS  Google Scholar 

  32. P.E. Blöchl, O. Jepsen, O.K. Andersen, Improved tetrahedron method for Brillouin-zone integratians. Phys. Rev. B 49, 16223–16233 (1994). https://doi.org/10.1103/PhysRevB.49.16223

    Article  ADS  Google Scholar 

  33. F.D. Murnaghan, The compressibility of media under extreme pressures. Proc. Natl. Acad. Sci. USA 30, 244–247 (1944). https://doi.org/10.1073/pnas.30.9.244

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. N. Zheng, Y. Jin, Band-gap and Slater-Pauling rule in half-metallic Ti2-based Heusler alloys: a first-principles study. J. Magn. Magn. Mater. 324, 3099–3104 (2012). https://doi.org/10.1016/j.jmmm.2012.05.009

    Article  ADS  Google Scholar 

  35. K. Sato, P.H. Dederichs, H. Katayama-Yoshida, J. Kudrnovsky, Exchange interactions in diluted magnetic semiconductors. J. Phys. 16, S5491–S5497 (2004). https://doi.org/10.1088/0953-8984/16/48/003

    Article  Google Scholar 

  36. S. Skaftouros, K. Özdoğan, E. Şaşıoğlu, I. Galanakis, Search for spin gapless semiconductors: the case of inverse Heusler compounds. Appl. Phys. Lett. 102, 022402-1–22404 (2013). https://doi.org/10.1063/1.4775599

    Article  Google Scholar 

  37. X. Ren, P. Rinke, C. Joas, M. Scheffler, Random-phase approximation and its applications in computational chemistry and materials science. J. Mater. Sci. 47, 7447–7471 (2012). https://doi.org/10.1007/s10853-012-6570-4

    Article  ADS  Google Scholar 

  38. C.M.I. Okoye, Theoretical study of the electronic structure, chemical bonding and optical properties of KNbO3 in the paraelectric cubic phase. J. Phys. 15, 5945–5958 (2003). https://doi.org/10.1088/0953-8984/15/35/304

    Article  Google Scholar 

  39. A.M. Fox, Optical properties of solids (Oxford University Press, Oxford, 2001)

    Google Scholar 

  40. A. Delin, A.O. Eriksson, R. Ahuja, B. Johansson, M.S.S. Brooks, T. Gasche, S. Auluck, J.M. Wills, Optical properties of the group-IVB refractory metal compounds. Phys. Rev. B 54, 1673–1681 (1996). https://doi.org/10.1103/PhysRevB.54.1673

    Article  ADS  Google Scholar 

  41. D.P. Rai, R.K. Thapa, Study of electronic, magnetic, optical and elastic properties of Cu2MnAl a gapless full Heusler compound. J. Alloys Compd. 612, 355–360 (2014). https://doi.org/10.1016/j.jallcom.2014.05.056

    Article  Google Scholar 

  42. F. Wooten, Optical properties of solids (Academic Press, New York, 1972)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nazmiye Kervan.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kervan, N. Electronic structure, magnetic and optical properties of the Ti2RuAl full-Heusler compound by a first-principles study. Eur. Phys. J. B 96, 106 (2023). https://doi.org/10.1140/epjb/s10051-023-00570-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-023-00570-7

Navigation