Skip to main content
Log in

Random-phase approximation and its applications in computational chemistry and materials science

  • First Principles Computations
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The random-phase approximation (RPA) as an approach for computing the electronic correlation energy is reviewed. After a brief account of its basic concept and historical development, the paper is devoted to the theoretical formulations of RPA, and its applications to realistic systems. With several illustrating applications, we discuss the implications of RPA for computational chemistry and materials science. The computational cost of RPA is also addressed which is critical for its widespread use in future applications. In addition, current correction schemes going beyond RPA and directions of further development will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Hohenberg P, Kohn W (1964) Phys Rev 136:B864

    Article  Google Scholar 

  2. Kohn W, Sham LJ (1965) Phys Rev 140:A1133

    Article  Google Scholar 

  3. Becke A (1988) Phys Rev A 38:3098

    Article  CAS  Google Scholar 

  4. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  5. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  6. Perdew JP, Schmidt K (2001) In: Van Doren V, Van Alsenoy C, Geerlings P (eds) In: Density functional theory and its application to materials. AIP, Melville, NY

    Google Scholar 

  7. Bohm D, Pines D (1953) Phys Rev 92:609

    Article  CAS  Google Scholar 

  8. Gell-Mann M, Brueckner KA (1957) Phys Rev 106:364

    Article  CAS  Google Scholar 

  9. Fetter AL, Walecka JD (1971) In: Quantum theory of many-particle systems. McGraw-Hill, New York

    Google Scholar 

  10. Grüneis A, Marsman M, Kresse G (2010) J Chem Phys 133:074107

    Article  CAS  Google Scholar 

  11. Langreth DC, Perdew JP (1977) Phys Rev B 15:2884

    Article  Google Scholar 

  12. Furche F (2001) Phys Rev B 64:195120

    Article  CAS  Google Scholar 

  13. Fuchs M, Gonze X (2002) Phys Rev B 65:235109

    Article  CAS  Google Scholar 

  14. Furche F, Van Voorhis T (2005) J Chem Phys 122:164106

    Article  CAS  Google Scholar 

  15. Scuseria GE, Henderson TM, Sorensen DC (2008) J Chem Phys 129:231101

    Article  CAS  Google Scholar 

  16. Janesko BG, Henderson TM, Scuseria GE (2009) J Chem Phys 130:081105

    Article  CAS  Google Scholar 

  17. Toulouse J, Gerber IC, Jansen G, Savin A, Ángyán JG (2009) Phys Rev Lett 102:096404

    Article  CAS  Google Scholar 

  18. Paier J, Janesko BG, Henderson TM, Scuseria GE, Grüneis A, Kresse G (2010) J Chem Phys 132:094103 (erratum: ibid. 133:179902 (2010))

    Google Scholar 

  19. Marini A, García-González P, Rubio A (2006) Phys Rev Lett 96:136404

    Article  CAS  Google Scholar 

  20. Jiang H, Engel E (2007) J Chem Phys 127:184108

    Article  CAS  Google Scholar 

  21. Harl J, Kresse G (2008) Phys Rev B 77:045136

    Article  CAS  Google Scholar 

  22. Harl J, Kresse G (2009) Phys Rev Lett 103:056401

    Article  CAS  Google Scholar 

  23. Lu D, Li Y, Rocca D, Galli G (2009) Phys Rev Lett 102:206411

    Article  CAS  Google Scholar 

  24. Dobson JF, Wang J (1999) Phys Rev Lett 82:2123

    Article  CAS  Google Scholar 

  25. Rohlfing M, Bredow T (2008) Phys Rev Lett 101:266106

    Article  CAS  Google Scholar 

  26. Ren X, Rinke P, Scheffler M (2009) Phys Rev B 80:045402

    Article  CAS  Google Scholar 

  27. Schimka L, Harl J, Stroppa A, Grüneis A, Marsman M, Mittendorfer F, Kresse G (2010) Nat Mater 9:741

    Article  CAS  Google Scholar 

  28. Zhu W, Toulouse J, Savin A, Ángyán JG (2010) J Chem Phys 132:244108

    Article  CAS  Google Scholar 

  29. Lebègue S, Harl J, Gould T, Ángyán JG, Kresse G, Dobson JF (2010) Phys Rev Lett 105:196401

    Article  CAS  Google Scholar 

  30. Eshuis H, Yarkony J, Furche F (2010) J Chem Phys 132:234114

    Article  CAS  Google Scholar 

  31. Ismail-Beigi S (2010) Phys Rev B 81:195126

    Article  CAS  Google Scholar 

  32. Göltl F, Hafner J (2011) J Chem Phys 134:064102

    Article  CAS  Google Scholar 

  33. Eshuis H, Furche F (2011) J Phys Chem Lett 2:983

    Article  CAS  Google Scholar 

  34. Ren X, Tkatchenko A, Rinke P, Scheffler M (2011) Phys Rev Lett 106:153003

    Article  CAS  Google Scholar 

  35. Heßelmann A, Görling A (2011) Mol Phys 109:2473

  36. Ruzsinszky A, Perdew JP, Csonka GI (2010) J Chem Theory Comput 6:127

    Article  CAS  Google Scholar 

  37. Ruzsinszky A, Perdew JP, Csonka GI (2011) J Chem Phys 134:114110

    Article  CAS  Google Scholar 

  38. Heßelmann A (2011) J Chem Phys 134:204107

    Article  CAS  Google Scholar 

  39. Klopper W, Teale AM, Coriani S, Pedersen TB, Helgaker T (2011) Chem Phys Lett 510:147

    Article  CAS  Google Scholar 

  40. Eshuis H, Bates JE, Furche F (2012) Theor Chem Acc 131:1084

    Google Scholar 

  41. Hellgren M, Rohr DR, Gross EKU (2012) J Chem Phys 136:034106

    Google Scholar 

  42. Verma P, Bartlett RJ (2012) J Chem Phys 136:044105

    Google Scholar 

  43. Bohm D, Pines D (1951) Phys Rev 82:625

    Article  CAS  Google Scholar 

  44. Pines D, Bohm D (1952) Phys Rev 85:338

    Article  CAS  Google Scholar 

  45. Pines D (1953) Phys Rev 92:626

    Article  CAS  Google Scholar 

  46. Gell-Mann M, Brueckner KA (1957) Phys Rev 106:364

    Article  CAS  Google Scholar 

  47. Pines D (1961) The many-body problem: a lecture note and reprint volume. Benjamin, New York

    Google Scholar 

  48. Hoddeson L, Schubert H, Heims SJ, Baym G (1992) In: Hoddeson L, Braun E, Teichmann J, Weart S (eds) Out of the crystal maze: chapters from the history of solid-state physics. Oxford University Press, Oxford, p 489

    Google Scholar 

  49. Hughes RIG (2006) Perspect Sci 14:457

    Article  Google Scholar 

  50. Kojevnikov A (2002) Hist Stud Phys Biol Sci 33:161

    Google Scholar 

  51. Wigner E, Seitz F (1933) Phys Rev 43:804

    Article  CAS  Google Scholar 

  52. Wigner E, Seitz F (1934) Phys Rev 46:509

    Article  CAS  Google Scholar 

  53. Wigner E (1934) Phys Rev 46:1002

    Article  CAS  Google Scholar 

  54. Wigner E (1938) Trans Faraday Soc 34:678

    Article  CAS  Google Scholar 

  55. Herring C (1980) Proc R Soc Lond Ser A, Math Phys Sci 371:67

  56. Debye P, Hückel E (1923) Phys Z 24:185

    CAS  Google Scholar 

  57. Debye P, Hückel E (1923) Phys Z 24:305

    CAS  Google Scholar 

  58. Thomas LH (1927) Math Proc Camb Philos Soc 23:542

    Article  CAS  Google Scholar 

  59. Fermi E (1927) Rend Accad Naz Lincei 6:602

    CAS  Google Scholar 

  60. Fermi E (1928) Z Phys 48:73

    Article  CAS  Google Scholar 

  61. Dirac PAM (1930) Proc Camb Philos Soc 26:376

    Article  CAS  Google Scholar 

  62. von Weizsäcker CF (1935) Z Phys 96:431

    Article  Google Scholar 

  63. Landsberg PT (1949) Proc Phys Soc 62:806

    Article  Google Scholar 

  64. Wohlfarth E (1950) Philos Mag 41:534

    CAS  Google Scholar 

  65. Bohm D, Pines D (1950) Phys Rev 80:903

    Article  CAS  Google Scholar 

  66. Bloch F, Nordsieck A (1937) Phys Rev 52:54

    Article  CAS  Google Scholar 

  67. Pauli W, Fierz M, (1938) Il Nuovo Cimento (1924–1942)

  68. Blum AS, Joas C, forthcoming

  69. Bohr A, Mottelson BR (1953) K Dan Matematisk-Fysiske Medd 27:1

    CAS  Google Scholar 

  70. Lindhard J (1954) Kgl Danske Videnskab Selskab, Mat-Fys Medd 28:8

  71. Tomonaga S (1955) Prog Theor Phys 13:467

    Article  Google Scholar 

  72. Tomonaga S (1955) Prog Theor Phys 13:482

    Article  Google Scholar 

  73. Mott NF (1954) In: Proceedings of the 10th Solvay Congress, Bruxelles

  74. Fröhlich H, Pelzer H (1955) Proc Phys Soc 68:525

    Article  Google Scholar 

  75. Hubbard J (1955) Proc Phys Soc 68:441

    Article  Google Scholar 

  76. Hubbard J (1955) Proc Phys Soc 68:976

    Article  Google Scholar 

  77. Landau LD, Eksperim Zh (1956) i Teor. Fiz 30:1058 (English translation: Soviet Phys.–JETP 3:920 (1956))

  78. Brueckner KA (1955) Phys Rev 97:1353

    Article  CAS  Google Scholar 

  79. Bethe HA (1956) Phys Rev 103:1353

    Article  CAS  Google Scholar 

  80. Goldstone J (1957) Proc R Soc (London) A239:267

    Google Scholar 

  81. Gell-Mann M, Low F (1951) Phys Rev 84:350

    Article  CAS  Google Scholar 

  82. Miyazawa H (1951) Prog Theor Phys 6:801

    Article  Google Scholar 

  83. Salam A (1953) Prog Theor Phys 9:550

    Article  Google Scholar 

  84. Macke W (1950) Z Naturforsch A 5:192

    Google Scholar 

  85. Gell-Mann M (1957) Phys Rev 106:369

    Article  CAS  Google Scholar 

  86. Hubbard J (1957) Proc R Soc (London) A240:539

    Google Scholar 

  87. Hubbard J (1957) Proc R Soc (London) A243:336

    Google Scholar 

  88. Sawada K (1957) Phys Rev 106:372

    Article  CAS  Google Scholar 

  89. Sawada K, Brueckner KA, Fukuda N, Brout R (1957) Phys Rev 108:507

    Article  CAS  Google Scholar 

  90. Bohm D, Huang K, Pines D (1957) Phys Rev 107:71

    Article  CAS  Google Scholar 

  91. Nozières P, Pines D (1958) Il Nuovo Cimento 9:470

    Article  Google Scholar 

  92. Nozières P, Pines D (1958) Phys Rev 111:442

    Article  Google Scholar 

  93. Langreth DC, Perdew JP (1975) Solid State Commun 17:1425

    Article  Google Scholar 

  94. Gunnarsson O, Lundqvist BI (1976) Phys Rev B 13:4274

    Article  CAS  Google Scholar 

  95. Kümmel S, Kronik L (2008) Rev Mod Phys 80:3

    Article  CAS  Google Scholar 

  96. Furche F (2008) J Chem Phys 129:114105

    Article  CAS  Google Scholar 

  97. Freeman DL (1977) Phys Rev B 15:5512

    Article  Google Scholar 

  98. Pitarke JM, Eguiluz AG (1998) Phys Rev B 57:6329

    Article  CAS  Google Scholar 

  99. Kurth S, Perdew JP (1999) Phys Rev B 59:10461

    Article  CAS  Google Scholar 

  100. Beck DE (1984) Phys Rev B 30:6935

    Article  CAS  Google Scholar 

  101. Szabo A, Ostlund NS (1977) J Chem Phys 67:4351

    Article  CAS  Google Scholar 

  102. Dobson JF (1994) In: Das MP (ed) Topics in condensed matter physics. Nova, New York

    Google Scholar 

  103. Dobson JF, McLennan K, Rubio A, Wang J, Gould T, Le HM, Dinte BP (2001) Aust J Chem 54:513

    Article  CAS  Google Scholar 

  104. Dobson JF, Gould T (2012) J Phys: Condens Matter 24:073201

    Google Scholar 

  105. Hedin L, Lundqvist S (1969) In: Solid state physics: advances in research and applications, vol 23. Academic Press, New York and London, p 1

  106. Singwi KS, Tosi MP, Land RH, Sjölander A (1968) Phys Rev 176:589

    Article  CAS  Google Scholar 

  107. Yan Z, Perdew JP, Kurth S (2000) Phys Rev B 61:16430

    Article  CAS  Google Scholar 

  108. Aryasetiawan F, Miyake T, Terakura K (2002) Phys Rev Lett 88:166401

    Article  CAS  Google Scholar 

  109. Li Y, Lu D, Nguyen H-V, Galli G (2010) J Phys Chem A 114:1944

    Article  CAS  Google Scholar 

  110. Miyake T, Aryasetiawan F, Kotani T, van Schilfgaarde M, Usuda M, Terakura K (2002) Phys Rev B 66:245103

    Article  CAS  Google Scholar 

  111. García-González P, Fernández JJ, Marini A, Rubio A (2007) J Phys Chem A 111:12458

    Article  CAS  Google Scholar 

  112. Harl J, Schimka L, Kresse G (2010) Phys Rev B 81:115126

    Article  CAS  Google Scholar 

  113. Ma J, Michaelides A, Alfè D, Schimka L, Kresse G, Wang E (2011) Phys Rev B 84:033402

    Article  CAS  Google Scholar 

  114. Kim H-J, Tkatchenko A, Cho J-H, Scheffler M (2012) Phys Rev B 85:041403

    Article  CAS  Google Scholar 

  115. Mori-Sanchez P, Cohen AJ, Yang W (2012) Phys Rev A 85:042507

    Article  CAS  Google Scholar 

  116. Hendersona TM, Scuseria GE (2010) Mol Phys 108:2511

    Article  CAS  Google Scholar 

  117. Toulouse J, Colonna F, Savin A (2004) Phys Rev A 70:062505

    Article  CAS  Google Scholar 

  118. Janesko BG, Henderson TM, Scuseria GE (2009) J Chem Phys 131:154115

    Article  CAS  Google Scholar 

  119. Jansen G, Liu R-F, Ángyán JG (2010) J Chem Phys 133:154106

    Article  CAS  Google Scholar 

  120. Toulouse J, Zhu W, Savin A, Jansen G, Ángyán JG (2011) J Chem Phys 135:084119

    Article  CAS  Google Scholar 

  121. Ángyán JG, Liu R-F, Toulouse J, Jansen G (2011) J Chem Theory Comput 7:3116

    Article  CAS  Google Scholar 

  122. Irelan RM, Hendersona TM, Scuseria GE (2011) J Chem Phys 135:094105

    Article  CAS  Google Scholar 

  123. Heßelmann A, Görling A (2010) Mol Phys 108:359

    Article  CAS  Google Scholar 

  124. Heßelmann A, Görling A (2011) Phys Rev Lett 106:093001

    Article  CAS  Google Scholar 

  125. Grüneis A, Marsman M, Harl J, Schimka L, Kresse G (2009) J Chem Phys 131:154115

    Article  CAS  Google Scholar 

  126. Paier J, Ren X, Rinke P, Scuseria GE, Grüneis A, Kresse G, Scheffler M (2012) New J Phys 14:043002

    Article  CAS  Google Scholar 

  127. Godby RW, Schlüter M, Sham LJ (1986) Phys Rev Lett 56:2415

    Article  CAS  Google Scholar 

  128. Godby RW, Schlüter M, Sham LJ (1988) Phys Rev B 37:10159

    Article  Google Scholar 

  129. Kotani T (1998) J Phys: Condens Matter 10:9241

    Article  CAS  Google Scholar 

  130. Grüning M, Marini A, Rubio A (2006) Phys Rev B R74:161103

    Article  CAS  Google Scholar 

  131. Grüning M, Marini A, Rubio A (2006) J Chem Phys 124:154108

    Article  CAS  Google Scholar 

  132. Hellgren M, von Barth U (2007) Phys Rev B 76:075107

    Article  CAS  Google Scholar 

  133. Ren X, Rinke P, Blum V, Wieferink J, Tkatchenko A, Sanfilippo A, Reuter K, Scheffler M (2012) New J Phys 14:053020

    Google Scholar 

  134. Blum V, Hanke F, Gehrke R, Havu P, Havu V, Ren X, Reuter K, Scheffler M (2009) Comp Phys Commun 180:2175

    Article  CAS  Google Scholar 

  135. Nguyen H-V, de Gironcoli S (2009) Phys Rev B 79:205114

    Article  CAS  Google Scholar 

  136. Wilson HF, Gygi F, Galli G (2008) Phys Rev B 78:113303

    Article  CAS  Google Scholar 

  137. Baroni S, de Gironcoli S, Corso AD, Giannozzi P (2001) Rev Mol Phys 73:515

    Article  CAS  Google Scholar 

  138. Foerster D, Koval P, Sánchez-Portal D (2011) J Chem Phys 135:074105

    Article  CAS  Google Scholar 

  139. Ochsenfeld C, Kussmann J, Lambrecht DS (2007) In: Reviews in computational chemistry, vol. 23. VCH Publishers, New York, p 1

  140. Nguyen H-V, Galli G (2010) J Chem Phys 132:044109

    Article  CAS  Google Scholar 

  141. Tao J, Gao X, Vignale G, Tokatly IV (2009) Phys Rev Lett 103:086401

    Article  CAS  Google Scholar 

  142. Gould T, Dobson JF (2011) Phys Rev B 84:241108

    Article  CAS  Google Scholar 

  143. Curtiss LA, Raghavachari K, Trucks GW, Pople JA (1991) J Chem Phys 94:7221

    Article  CAS  Google Scholar 

  144. Jurečka P, Šponer J, Černý J, Hobza P (2006) Phys Chem Chem Phys 8:1985

    Article  CAS  Google Scholar 

  145. Szabo A, Ostlund NS (1989) In: Modern quantum chemistry: introduction to advanced electronic structure theory. McGraw-Hill, New York

    Google Scholar 

  146. Kubo R (1966) Rep Prog Phys 29:255

    Article  CAS  Google Scholar 

  147. Nozières P, Pines D (1966) In: The theory of quantum liquids. Benjamin, New York

    Google Scholar 

  148. Sun J-Q, Bartlett RJ (1996) J Chem Phys 104:8553

    Article  CAS  Google Scholar 

  149. Ayala PY, Kudin KN, Scuseria GE (2001) J Chem Phys 115:9698

    Article  CAS  Google Scholar 

  150. Hirata S, Podeszwa R, Tobita M, Bartlett RJ (2004) J Chem Phys 120:2581

    Article  CAS  Google Scholar 

  151. Pisani C, Maschio L, Casassa S, Halo M, Schütz M, Usvyat D (2008) J Comput Chem 29:2113

    Article  CAS  Google Scholar 

  152. Luttinger JM, Ward JC (1960) Phys Rev 118:1417

    Article  Google Scholar 

  153. Holm B, von Barth U (1998) Phys Rev B 57:2108

    Article  CAS  Google Scholar 

  154. Dahlen NE, van Leeuwen R, von Barth U (2005) Int J Quantum Chem 101:512

    Article  CAS  Google Scholar 

  155. Dahlen NE, van Leeuwen R, von Barth U (2006) Phys Rev A 73:012511

    Article  CAS  Google Scholar 

  156. Stan A, Dahlen NE, van Leeuwen R (2006) Europhys Lett 76:298

    Article  CAS  Google Scholar 

  157. Bartlett RJ, Musiał M (2007) Rev Mod Phys 79:291

    Article  CAS  Google Scholar 

  158. Cízek J (1966) J Chem Phys 45:4256

    Article  Google Scholar 

  159. Bishop RF, Lührmann KH (1978) Phys Rev B 17:3757

    Article  CAS  Google Scholar 

  160. Reid WT (1972) In: Riccati differential equations. Academic Press, New York

    Google Scholar 

  161. Seidl A, Görling A, Vogl P, Majewski JA, Levy M (1996) Phys Rev B 53:3764

    Article  CAS  Google Scholar 

  162. Görling A, Levy M (1993) Phys Rev B 47:13105

    Article  Google Scholar 

  163. Jiang H, Engel E (2006) J Chem Phys 125:184108

    Article  CAS  Google Scholar 

  164. Bartlett RJ (2010) Mol Phys 108:3299

    Article  CAS  Google Scholar 

  165. Ren X, Rinke P, Scuseria GE, Scheffler M, in preparation

  166. Runge E, Gross EKU (1984) Phys Rev Lett 52:997

    Article  CAS  Google Scholar 

  167. Petersilka M, Gossmann UJ, Gross EKU (1996) Phys Rev Lett 76:1212

    Article  CAS  Google Scholar 

  168. Fuchs M, Niquet Y-M, Gonze X, Burke K (2005) J Chem Phys 122:094116

    Article  CAS  Google Scholar 

  169. McLachlan AD, Ball MA (1964) Rev Mol Phys 36:844

    Article  CAS  Google Scholar 

  170. Dunning JTH (1989) J. Chem. Phys. 90:1007

    Article  CAS  Google Scholar 

  171. Wilson AK, van Mourik T, Dunning TH (1996) J Mol Struc (THEOCHEM) 388:339

    CAS  Google Scholar 

  172. Boys SF, Bernardi F (1970) Mol Phys 19:553

    Article  CAS  Google Scholar 

  173. Wolniewicz L (1993) J Chem Phys 99:1851

    Article  CAS  Google Scholar 

  174. Tang KT, Toennies JP (2003) J Chem Phys 118:4976

    Article  CAS  Google Scholar 

  175. Røeggen I, Veseth L (2005) Int J Quan Chem 101:201

    Article  CAS  Google Scholar 

  176. Feller D, Peterson KA (1999) J Chem Phys 110:8384

    Article  CAS  Google Scholar 

  177. Grimme S, Antony J, Ehrlich S, Krieg H (2010) J Chem Phys 132:154104

    Article  CAS  Google Scholar 

  178. Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215

    Article  CAS  Google Scholar 

  179. Tkatchenko A, Romaner L, Hofmann OT, Zojer E, Ambrosch-Draxl C, Scheffler M (2010) MRS Bull 35:435

    Article  CAS  Google Scholar 

  180. Lee K, Murray ÉD, Kong L, Lundqvist BI, Langreth DC (2010) Phys Rev B 82:081101(R)

    Google Scholar 

  181. Gulans A, Puska MJ, Nieminen RM (2009) Phys Rev 79:201105(R)

    Google Scholar 

  182. Sato T, Nakai H (2009) J Chem Phys 131:224104

    Article  CAS  Google Scholar 

  183. Klimeš J, Bowler DR, Michaelides A (2010) J Phys: Condens Matter 22:022201

    Article  CAS  Google Scholar 

  184. Eshuis H, Furche F (2012) J Chem Phys 136:084105

    Article  CAS  Google Scholar 

  185. Takatani T, Hohenstein EG, Malagoli M, Marshall MS, Sherrill CD (2010) J Chem Phys 132:144104

    Article  CAS  Google Scholar 

  186. Cohen AJ, Mori-Sanchez P, Yang W (2008) Science 321:792

    Article  CAS  Google Scholar 

  187. Zhao Y, Lynch BJ, Truhlar DG (2004) J Phys Chem A 108:2715

    Article  CAS  Google Scholar 

  188. Zhao Y, González-García N, Truhlar DG (2005) J Phys Chem A 109:2012

    Article  CAS  Google Scholar 

  189. Goerigk L, Grimme S (2010) J Chem Theory Comput 6:107

    Article  CAS  Google Scholar 

  190. Martina JML, de Oliveira G (1999) J Chem Phys 111:1843

    Article  Google Scholar 

  191. Tao J, Perdew JP, Staroverov VN, Scuseria GE (2003) Phys Rev Lett 91:146401

    Article  CAS  Google Scholar 

  192. Weigend F, Ahlrichs R (2005) Phys Chem Chem Phys 7:3297

    Article  CAS  Google Scholar 

  193. Chase MW Jr (1998) In: NIST-JANAF thermochemical tables. AIP, New York

  194. Paier J, Marsman M, Kresse G (2007) J Chem Phys 127:024103

    Article  CAS  Google Scholar 

  195. Dobson JF, White A, Rubio A (2006) Phys Rev Lett 96:073201

    Article  CAS  Google Scholar 

  196. Mittendorfer F, Garhofer A, Redinger J, Klimeš J, Harl J, Kresse G (2011) Phys Rev B 84:201401(R)

    Article  CAS  Google Scholar 

  197. Olsen T, Yan J, Mortensen JJ, Thygesen KS (2011) Phys Rev Lett 107:156401

    Google Scholar 

  198. Feibelman PJ, Hammer B, Nørskov JK, Wagner F, Scheffler M, Stumpf R, Watwe R, Dumestic J (2001) J Phys Chem B 105:4018

    Article  CAS  Google Scholar 

  199. Steininger H, Lehwald S, Ibach H (1982) Surf Sci 123:264

    Article  CAS  Google Scholar 

  200. Blackman GS, Xu M-L, Ogletree DF, Hove MAV, Somorjai GA (1988) Phys Rev Lett 61:2352

    Article  CAS  Google Scholar 

  201. Hu Q-M, Reuter K, Scheffler M (2007) Phys Rev Lett 98:176103

    Article  CAS  Google Scholar 

  202. Armiento R, Mattsson AE (2005) Phys Rev B 72:085108

    Article  CAS  Google Scholar 

  203. Grimme S (2004) J Comput Chem 25:1463

    Article  CAS  Google Scholar 

  204. Dion M, Rydberg H, Schröder E, Langreth DC, Lundqvist BI (2004) Phys Rev Lett 92:246401

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinguo Ren.

Appendices

Appendix 1: RI-RPA implementation in FHI-aims

In this section, we will briefly describe how RPA is implemented in the FHI-aims code [134] using the resolution-of-identity (RI) technique. More details can be found in Ref. [133]. For a different formulation of RI-RPA see Ref. [30, 40]. We start with the expression for the RPA correlation energy in Eq. (23), which can be formally expanded in a Taylor series,

$$ E^{\rm RPA}_{\rm c} = -\frac{1}{\pi} \int\limits_0^\infty d\omega \sum_{n=2}^\infty \frac{1}{2n} \hbox{Tr}\left[\left( \chi^0(i\omega)v \right)^n \right]. $$
(52)

Applying RI to RPA in this context means to represent both χ0(iω) and v in an appropriate auxiliary basis set. Eq. (52) can then be cast into a series of matrix operations. To achieve this we perform the following RI expansion

$$ \psi_i^\ast({\bf r})\psi_j({\bf r}) \approx \sum_{\mu=1}^{N_{\rm aux}} C_{ij}^\mu P_\mu({\bf r}) , $$
(53)

where P μ(r) are auxiliary basis functions, C μ ij are the expansion coefficients, and N aux is the size of the auxiliary basis set. Here C serves as the transformation matrix that reduces the rank of all matrices from N occ*N vir to N aux, with N occN vir and N aux being the number of occupied single-particle orbitals, unoccupied (virtual) single-particle orbitals, and auxiliary basis functions, respectively. The determination of the C coefficients is not unique, but depends on the underlying metric. In quantum chemistry the “Coulomb metric” is the standard choice where the C coefficients are determined by minimizing the Coulomb repulsion between the residuals of the expansion in Eq. (53) (for details see Ref. [133] and references therein). In this so-called “RI-V” approximation, the C coefficients are given by

$$ C_{ij}^{\mu} = \sum_{\nu}(ij|\nu)V_{\nu\mu}^{-1} , $$
(54)

where

$$ (ij|\nu)=\iint \frac{\phi_i({\bf r})\phi_j({\bf r})P_\nu({\bf r^{\prime}})}{|{\bf r}-{\bf r^{\prime}}|} {\rm d}{\bf r} {\rm d}{\bf r^{\prime}} , $$
(55)

and

$$ V_{\mu\nu}=\int \frac{P_\mu({\bf r}) P_\nu({\bf r^{\prime}})}{|{\bf r}-{\bf r^{\prime}}|} {\rm d}{\bf r} {\rm d}{\bf r^{\prime}}. $$
(56)

In practice, sufficiently accurate auxiliary basis set can be constructed such that N aux ≪ N occ*N vir, thus reducing the computational effort considerably. A practically accurate and efficient way of constructing auxiliary basis set {P μ(r)} and their associated {C μ ij } for atom-centered basis functions of general shape has been presented in Ref. [133].

Combining Eq. (20) with (53) yields

$$ \begin{aligned} \chi^0({\bf r},{\bf r^{\prime}}, i\omega)& = \sum_{\mu\nu} \sum_{ij} \frac{(f_i-f_j)C_{ij}^\mu C_{ji}^\nu} {\epsilon_i - \epsilon_j - i\omega} P_\mu({\bf r})P_\nu({\bf r^{\prime}}) \\ & = \sum_{\mu\nu} \chi^0_{\mu\nu}(i\omega) P_\mu({\bf r})P_{\nu}({\bf r^{\prime}}), \end{aligned} $$
(57)

where

$$ \chi^0_{\mu\nu}(i\omega) = \sum_{ij} \frac{(f_i-f_j)C_{ij}^\mu C_{ji}^\nu}{\epsilon_i - \epsilon_j - i\omega}. $$
(58)

Introducing the Coulomb matrix

$$ V_{\mu\nu} = \iint {\rm d}{\bf r}{\bf r^{\prime}} P_\mu({\bf r}) v({\bf r},{\bf r^{\prime}})P_{\nu}({\bf r^{\prime}}), $$
(59)

we obtain the first term in (52)

$$ \begin{aligned} E_{\rm c}^{(2)} = & -\frac{1}{4\pi} \int\limits_0^\infty d\omega \int\cdots\int {\rm d}{\bf r} {\rm d}{\bf r}_1 {\rm d}{\bf r}_2 {\rm d}{\bf r^{\prime}} \\ &\quad \times \chi^0({\bf r},{\bf r}_1) v({\bf r}_1,{\bf r}_2) \chi^0({\bf r}_2,{\bf r^{\prime}}) v({\bf r^{\prime}},{\bf r}) \\ = & -\frac{1}{4\pi} \int\limits_0^\infty d\omega \sum_{\mu\nu,\alpha\beta} \chi^0_{\mu\nu}(i\omega) V_{\nu\alpha} \chi^0_{\alpha\beta}(i\omega) V_{\beta,\mu} \\ = & -\frac{1}{4\pi} \int\limits_0^\infty {\rm d}\omega \hbox{Tr}\left[\left(\chi^0(i\omega)V\right)^2\right]. \end{aligned} $$
(60)

This term corresponds to the second-order direct correlation energy also found in MP2. Similar equations hold for the higher order terms in (52). This suggests that the trace operation in Eq. (23) can be re-interpreted as a summation over auxiliary basis function indices, namely, \(\hbox{Tr}\left[AB\right] = \sum_{\mu\nu}A_{\mu\nu}B_{\nu\mu}, \) provided that χ0(rr′, iω) and v(rr′) are represented in terms of a suitable set of auxiliary basis functions. Equations (23), (58), and (59) constitute a practical scheme for RI-RPA. In this implementation, the most expensive step is Eq. (58) for the construction of the independent response function, scaling as N 2aux N occ N vir. We note that the same is true for standard plane-wave implementations [112] where N aux corresponds to the number of plane waves used to expand the response function. In that sense RI-based local-basis function implementations are very similar to plane-wave-based or LAPW-based implementations, where the plane waves themselves or the mixed product basis serve as the auxiliary basis set.

Appendix 2: Error statistics for G2-I, S22, and NHBH38/NHTBH38 test sets

Tables 2, 3, and 4 present a more detailed error analysis for the G2-I, S22, and NHBH38/NHTBH38 test sets. Given are the mean error (ME), the mean absolute error (MAE), the mean absolute percentage error (MAPE), the maximum absolute percentage error (MaxAPE), and the maximum absolute error (MaxAE).

Table 2 ME (in eV), MAE (in eV), MAPE (%), MaxAPE(%) for atomization energies of the G2-I set obtained with four RPA-based approaches in addition to PBE, PBE0 and MP2. A negative ME indicates overbinding (on average) and a positive ME underbinding. The cc-pV6Z basis set was used
Table 3 ME (in meV), MAE (in meV), MAPE (%), and MaxAPE(%) for the S22 test set [144] obtained with five RPA-based approaches in addition to PBE, PBE0, and MP2 obtained with FHI-aims. The basis set “tier 4 + a5Z-d” [133] was used in all calculations
Table 4 ME, MAE, and MaxAE (in eV) for the HTBH38 [187] and NHTBH38 [188] test sets obtained with four RPA-based approaches in addition to PBE, PBE0, and MP2, as obtained using FHI-aims. The cc-pV6Z basis set was used in all calculations. Negative ME indicates an underestimation of the barrier height on average

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ren, X., Rinke, P., Joas, C. et al. Random-phase approximation and its applications in computational chemistry and materials science. J Mater Sci 47, 7447–7471 (2012). https://doi.org/10.1007/s10853-012-6570-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6570-4

Keywords

Navigation