Skip to main content
Log in

Interaction of hydrogen with aluminum vacancies in the Y\(_3\)Al\(_5\)O\(_{12}\) garnet and effects on positron trapping

  • Regular Article - Computational Methods
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The introduction of hydrogen in the yttrium aluminum garnet, Y\(_3\)Al\(_5\)O\(_{12}\) (YAG), has been known to affect the optical and luminescence properties of this material. This makes it imperative to examine the nature of hydrogen impurities in YAG and also to understand how hydrogen interacts with native defects. Recent studies based on positron-annihilation lifetime spectroscopy (PALS) provided strong evidence on the presence of hydrogen inside the YAG lattice that eventually led to strong reduction of the positron lifetimes attributed to cation-vacancy defects. The present study reports first-principles calculations that determine the character of isolated hydrogen states in the YAG solid as well as the interaction and binding of hydrogen to the aluminum monovacancies. A hybrid functional approach that incorporates exact electron-exchange interactions is employed to determine the defect association of aluminum vacancies with hydrogen and the charge-transition levels of the resulting vacancy-hydrogen complexes. The effects of hydrogen towards passivation were studied by means of two-component density-functional theory where the positron trapping and corresponding lifetimes of the vacancy defects were calculated as a function of the number hydrogen atoms bound to each vacancy. The final results are also discussed in connection with the experimental PALS data.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request. This manuscript has no associated data or the data will not be deposited. [Author’s comment: More detailed data of the present study can be provided from the author on reasonable request.]

References

  1. R.C. Powell, in Physics of Solid State Laser Materials (Springer, New York, 1998)

    Google Scholar 

  2. J. Ueda, S. Tanabe, Opt. Mater.: X 1, 100018 (2019)

    Google Scholar 

  3. D.J. Robbins, B. Cockayne, B. Lent, C.N. Duckworth, J.L. Glasper, Phys. Rev. B 19, 1254 (1979)

    ADS  Google Scholar 

  4. C.R. Varney, D.T. Mackay, A. Pratt, S.M. Reda, F.A. Selim, J. Appl. Phys. 111, 063505 (2012)

    ADS  Google Scholar 

  5. D.T. Mackay, C.R. Varney, J. Buscher, F.A. Selim, J. Appl. Phys. 112, 023522 (2012)

    ADS  Google Scholar 

  6. P. Dorenbos, J. Lumin. 134, 310 (2013)

    Google Scholar 

  7. E. Zych, C. Brecher, J. Glodo, J. Phys.: Condens. Matter 12, 1947 (2000)

    ADS  Google Scholar 

  8. D. Winarski, C. Persson, F.A. Selim, Appl. Phys. Lett. 105, 221110 (2014)

    ADS  Google Scholar 

  9. C.R. Varney, D.T. Mackay, S.M. Reda, F.A. Selim, J. Phys. D Appl. Phys. 45, 015103 (2012)

    ADS  Google Scholar 

  10. F.A. Selim, C.R. Varney, M.C. Tarun, M.C. Rowe, G.S. Collins, M.D. McCluskey, Phys. Rev. B 88, 174102 (2013)

    ADS  Google Scholar 

  11. F.A. Selim, D. Winarski, C.R. Varney, M.C. Tarun, J. Ji, M.D. McCluskey, Results Phys. 5, 28 (2015)

    ADS  Google Scholar 

  12. M.J. Puska, R.M. Nieminen, Rev. Mod. Phys. 66, 841 (1994)

    ADS  Google Scholar 

  13. F. Tuomisto, I. Makkonen, Rev. Mod. Phys. 85, 1583 (2013)

    ADS  Google Scholar 

  14. L. Schuh, R. Metselaar, C.R.A. Catlow, J. Eur. Ceram. Soc. 7, 67 (1991)

    Google Scholar 

  15. M.M. Kuklja, R. Pandey, J. Am. Ceram. Soc. 82, 2881 (1999)

    Google Scholar 

  16. J. Chen, T.C. Lu, Y. Xu, A.G. Xu, D.Q. Chen, J. Phys.: Condens. Matter 20, 325212 (2008)

    Google Scholar 

  17. B. Liu, M. Gu, X. Liu, S. Huang, C. Ni, Appl. Phys. Lett. 94, 121910 (2009)

    ADS  Google Scholar 

  18. Z. Li, B. Liu, J. Wang, L. Sun, J. Wang, Y. Zhou, J. Am. Ceram. Soc. 95, 3628 (2012)

    Google Scholar 

  19. A.G. Marinopoulos, Eur. Phys. J. B 92, 242 (2019)

    ADS  Google Scholar 

  20. W. Lafargue-Dit-Hauret, M. Allix, B. Viana, S. Jobic, C. Latouche, Theor. Chem. Acc. 141, 58 (2022)

    Google Scholar 

  21. Y.-N. Xu, W.Y. Ching, Phys. Rev. B 59, 10530 (1999)

    ADS  Google Scholar 

  22. A.B. Munoz-Garcia, E. Anglada, L. Seijo, Intl. J. Quantum Chemistry 109, 1991 (2009)

    ADS  Google Scholar 

  23. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    ADS  Google Scholar 

  24. G.A. Slack, D.W. Oliver, R.M. Chrenko, S. Roberts, Phys. Rev. 177, 1308 (1969)

    ADS  Google Scholar 

  25. M. Marsman, J. Paier, A. Stroppa, G. Kresse, J. Phys.: Condens. Matter 20, 064201 (2008)

    ADS  Google Scholar 

  26. B. Chakraborty, Phys. Rev. B 24, 7423 (1981)

    ADS  Google Scholar 

  27. B. Chakraborty, R.W. Siegel, Phys. Rev. B 27, 4535 (1983)

    ADS  Google Scholar 

  28. E. Borónski, R.M. Nieminen, Phys. Rev. B 34, 3820 (1986)

    ADS  Google Scholar 

  29. F. Euler, J.A. Bruce, Acta Crystallogr. 19, 971 (1965)

    Google Scholar 

  30. S. Geller, Z. Kristallogr. 125, 1 (1967)

    Google Scholar 

  31. G. Kresse, J. Hafner, Phys. Rev. B 47, 558 (1993)

    ADS  Google Scholar 

  32. G. Kresse, J. Hafner, Phys. Rev. B 49, 14251 (1994)

    ADS  Google Scholar 

  33. G. Kresse, J. Furthmüller, Phys. Rev. B 54, 11169 (1996)

    ADS  Google Scholar 

  34. G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999)

    ADS  Google Scholar 

  35. P.E. Blöchl, Phys. Rev. B 50, 17953 (1994)

    ADS  Google Scholar 

  36. S.B. Zhang, J.E. Northrup, Phys. Rev. Lett. 67, 2339 (1991)

    ADS  Google Scholar 

  37. G. Makov, M.C. Payne, Phys. Rev. B 51, 4014 (1995)

    ADS  Google Scholar 

  38. K. Momma, F. Izumi, J. Appl. Crystallogr. 44, 1272 (2011)

    Google Scholar 

  39. X. Gonze, F. Jollet, F. Abreu Araujo, D. Adams, B. Amadon, T. Applencourt, C. Audouze, J.-M. Beuken, J. Bieder, A. Bokhanchuk, E. Bousquet, F. Bruneval, D. Caliste, M. Côté, F. Dahm, F. Da Pieve, M. Delaveau, M. Di Gennaro, B. Dorado, C. Espejo, G. Geneste, L. Genovese, A. Gerossier, M. Giantomassi, Y. Gillet, D.R. Hamann, L. He, G. Jomard, J. Laflamme Janssen, S. Le Roux, A. Levitt, A. Lherbier, F. Liu, I. Lukačević, A. Martin, C. Martins, M.J.T. Oliveira, S. Poncé, Y. Pouillon, T. Rangel, G.-M. Rignanese, A.H. Romero, B. Rousseau, O. Rubel, A.A. Shukri, M. Stankovski, M. Torrent, M.J. Van Setten, B. Van Troeye, M.J. Verstraete, D. Waroquiers, J. Wiktor, B. Xu, A. Zhou, J.W. Zwanziger, Comput. Phys. Commun. 205, 106 (2016)

  40. J. Wiktor, G. Jomard, M. Torrent, Phys. Rev. B 92, 125113 (2015)

    ADS  Google Scholar 

  41. B. Barbiellini, M.J. Puska, T. Torsti, R.M. Nieminen, Phys. Rev. B 51, 7341 (1995)

    ADS  Google Scholar 

  42. B. Barbiellini, M.J. Puska, T. Korhonen, A. Harju, T. Torsti, R.M. Nieminen, Phys. Rev. B 53, 16201 (1996)

    ADS  Google Scholar 

  43. M.J. Puska, A.P. Seitsonen, R.M. Nieminen, Phys. Rev. B 52, 10947 (1995)

    ADS  Google Scholar 

  44. J. Kuriplach, B. Barbiellini, Phys. Rev. B 89, 155111 (2014)

    ADS  Google Scholar 

  45. J. Sun, A. Ruzsinszky, J.P. Perdew, Phys. Rev. Lett. 115, 036402 (2015)

    ADS  Google Scholar 

  46. H.E. Hansen, R.M. Nieminen, M.J. Puska, J. Phys. F: Met. Phys. 14, 1299 (1984)

    ADS  Google Scholar 

  47. G. Brauer, W. Anwand, D. Grambole, J. Grenzer, W. Skorupa, J. Cížek, J. Kuriplach, I. Procházka, C.C. Ling, C.K. So, D. Schulz, D. Klimm, Phys. Rev. B 79, 115212 (2009)

    ADS  Google Scholar 

  48. O. Melikhova, J. Kuriplach, J. Čížek, I. Procházka, G. Brauer, W. Anwand, J. Phys: Conf. Ser. 225, 012035 (2010)

  49. A.G. Marinopoulos, J. Phys.: Condens. Matter 31, 315503 (2019)

Download references

Acknowledgements

This work was financially supported by FEDER (Programa Operacional Factores de Competitividade COMPETE) and FCT Portugal - Fundação para a Ciência e Tecnologia under the UID/FIS/04564/2016 and PTDC/FIS-MAC/29696/2017 projects. The computer resources of the Department of Physics of the University of Coimbra were used, including the Navigator cluster at the Laboratory for Advanced Computing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Marinopoulos.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marinopoulos, A.G. Interaction of hydrogen with aluminum vacancies in the Y\(_3\)Al\(_5\)O\(_{12}\) garnet and effects on positron trapping. Eur. Phys. J. B 96, 76 (2023). https://doi.org/10.1140/epjb/s10051-023-00548-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-023-00548-5

Navigation