Skip to main content
Log in

Heat fluctuations in overdamped non-isothermal processes

  • Regular Article - Statistical and Nonlinear Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

In stochastic thermodynamics, non-isothermal processes are essential for most Brownian thermal machines. In this paper, we investigate how the inclusion of a temperature protocol affects heat and its fluctuations. The protocol needs to satisfy certain constraints to allow the particle to be stationary at the end of the process. We investigate the fluctuations of heat when there is a non-isothermal process for the non-stationary final velocity case, and the overdamped harmonic and quartic potential. Our results are consistent with thermodynamics and demonstrates the importance of adding a kinetic energy term to the equations in overdamped systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability statement

Data sharing not applicable—article describes entirely theoretical research.

Data availability statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: Since it is a theoretical study with no experimental data.]

References

  1. M.K. Barnett, Sci. Mon. 62, 165 (1946)

    ADS  Google Scholar 

  2. M.K. Barnett, Sci. Mon. 62, 247 (1946)

    ADS  Google Scholar 

  3. M.J. Oliveira, Revista Brasileira de Ensino de Física 42 (2020)

  4. L. Peliti, S. Pigolotti, Stochastic Thermodynamics: An Introduction (Princeton University Press, Princeton, 2021)

    MATH  Google Scholar 

  5. K. Sekimoto, Stochastic Energetics, vol. 799 (Springer, Berlin, 2010)

    MATH  Google Scholar 

  6. P.V. Paraguassú, R. Aquino, W.A. Morgado, Phys. A. (2021). arXiv preprint arXiv:2102.09115

  7. P.V. Paraguassú, W.A.M. Morgado, Eur. Phys. J. B 94, 197 (2021)

    Article  ADS  Google Scholar 

  8. P.V. Paraguassú, W.A.M. Morgado, J. Stat. Mech. 2021, 023205 (2021). https://doi.org/10.1088/1742-5468/abda25. (ISSN 1742-5468)

    Article  Google Scholar 

  9. P.V. Paraguassú, W.A.M. Morgado, Phys. A Stat. Mech. Appl. 588, 126576 (2022). (ISSN 0378-4371)

    Article  Google Scholar 

  10. D. Chatterjee, B.J. Cherayil, Phys. Rev. E 82, 051104 (2010). https://doi.org/10.1103/PhysRevE.82.051104. (ISSN 1539-3755, 1550-2376)

    Article  ADS  MathSciNet  Google Scholar 

  11. D. Chatterjee, B.J. Cherayil, J. Stat. Mech. 2011, P03010 (2011). https://doi.org/10.1088/1742-5468/2011/03/P03010. (ISSN 1742-5468)

    Article  Google Scholar 

  12. A. Crisanti, A. Sarracino, M. Zannetti, Phys. Rev. E 95, 052138 (2017). https://doi.org/10.1103/PhysRevE.95.052138

    Article  ADS  Google Scholar 

  13. H.C. Fogedby, A. Imparato, J. Phys. A Math. Theor. 42, 475004 (2009). https://doi.org/10.1088/1751-8113/42/47/475004. (ISSN 1751-8121)

    Article  ADS  Google Scholar 

  14. H.C. Fogedby, J. Stat. Mech. 2020, 083208 (2020). https://doi.org/10.1088/1742-5468/aba7b2. (ISSN 1742-5468)

    Article  MathSciNet  Google Scholar 

  15. A. Ghosal, B.J. Cherayil, J. Stat. Mech. 2016, 043201 (2016). https://doi.org/10.1088/1742-5468/2016/04/043201. (ISSN 1742-5468)

    Article  Google Scholar 

  16. M.L. Rosinberg, G. Tarjus, T. Munakata, EPL 113, 10007 (2016). https://doi.org/10.1209/0295-5075/113/10007. (ISSN 0295-5075)

    Article  ADS  Google Scholar 

  17. B. Saha, S. Mukherji, J. Stat. Mech. 2014, P08014 (2014). https://doi.org/10.1088/1742-5468/2014/08/P08014. (ISSN 1742-5468)

    Article  Google Scholar 

  18. V. Holubec, A. Ryabov, J. Phys. A Math. Theor. 55, 013001 (2021)

    Article  ADS  Google Scholar 

  19. I.A. Martínez, É. Roldán, L. Dinis, D. Petrov, J.M. Parrondo, R.A. Rica, Nat. Phys. 12, 67 (2016)

    Article  Google Scholar 

  20. I.A. Martínez, É. Roldán, L. Dinis, D. Petrov, R.A. Rica, Phys. Rev. Lett. 114, 120601 (2015)

    Article  ADS  Google Scholar 

  21. V. Blickle, C. Bechinger, Nat. Phys. 8, 143 (2012)

    Article  Google Scholar 

  22. C.A. Plata, D. Guéry-Odelin, E. Trizac, A. Prados, J. Stat. Mech. Theory Exp. 2020, 093207 (2020)

    Article  Google Scholar 

  23. T. Schmiedl, U. Seifert, EPL (Europhysics Letters) 81, 20003 (2007)

    Article  ADS  Google Scholar 

  24. P.V. Paraguassú, R. Aquino, L. Defaveri, W.A. Morgado, Phys. Rev. E 106, 044106 (2022)

    Article  ADS  Google Scholar 

  25. R. García-García, (2018) arXiv preprint arXiv:1812.07311

  26. D. Arold, A. Dechant, E. Lutz, Phys. Rev. E 97, 022131 (2018)

  27. C.A. Plata, D. Guéry-Odelin, E. Trizac, A. Prados, Phys. Rev. E 101, 032129 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  28. K. Nakamura, J. Matrasulov, Y. Izumida, Phys. Rev. E 102, 012129 (2020)

    Article  ADS  Google Scholar 

  29. Y. Jun, P.-Y. Lai et al., Phys. Rev. Res. 3, 033130 (2021)

    Article  Google Scholar 

  30. G. Watanabe, Y. Minami, Phys. Rev. Res. 4, L012008 (2022)

    Article  Google Scholar 

  31. C. Jarzynski, D.K. Wójcik, PRL 92, 230602 (2004)

    Article  ADS  Google Scholar 

  32. H.S. Wio, Path Integrals for Stochastic Processes: An Introduction (World Scientific, Singapore, 2013)

    Book  MATH  Google Scholar 

  33. B. Suassuna, B. Melo, T. Guerreiro, Phys. Rev. A 103, 013110 (2021)

    Article  ADS  Google Scholar 

  34. P.H. Westfall, Am. Stat. 68, 191 (2014)

    Article  Google Scholar 

  35. S. Ciliberto, Phys. Rev. X 7, 021051 (2017)

    Google Scholar 

  36. P.E. Kloeden, E. Platen, Numerical Solution of Stochastic Differential Equations (Springer, Berlin, 1992), pp.103–160

    MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the Brazilian agencies CAPES and CNPq. PVP would like to thank FAPERJ for his current PhD fellowship. This study was financed in part by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

Author information

Authors and Affiliations

Authors

Contributions

PVP: conceptualization, methodology, writing—original draft, investigation; LD: simulation, methodology, software; WAMM: investigation, supervision, validation, review and editing.

Corresponding author

Correspondence to Welles A. M. Morgado.

Appendix A: Path integral calculation

Appendix A: Path integral calculation

Since the path integrals considered are Gaussian. We only need to calculate the stochastic action in its extremum. Both the harmonic and the non-stationary cases are very similar mathematically. Therefore, we will only show one of the cases: the harmonic potential.

The stochastic action with the temperature protocol is [32]

$$\begin{aligned} \mathcal {A}[x] = \frac{1}{4\gamma }\int _0^\tau \frac{\left( \gamma \dot{x}(t)+k x(t)\right) ^2}{T(t)} \mathrm{{d}}t, \end{aligned}$$
(A1)

extremizing this action we obtain the differential equation

$$\begin{aligned} \dot{u}(t) = \frac{k}{\gamma } u(t), \end{aligned}$$
(A2)

where \(u(t)=\frac{\left( \gamma \dot{x}(t)+k x(t)\right) }{T(t)}\), solving for u(t) we find the differential equation for the extremum of the position.

$$\begin{aligned} \gamma \dot{x} + k x = T(t) C e^{\frac{k}{\gamma }t}, \end{aligned}$$
(A3)

where C is an unknown constant. Solving for x(t) we have

$$\begin{aligned} x(t) = x_0 e^{-\frac{k}{\gamma }t}+ C \frac{e^{-\frac{k}{\gamma }t}}{\gamma }\int _0^t T(t')e^{2\frac{k}{\gamma }t'} \mathrm{{d}}t' \end{aligned}$$
(A4)

To find C we only need the boundary condition \(x(\tau ) = x_\tau \), which gives

$$\begin{aligned} C = -\gamma \frac{\left( x_0-x_\tau e^{\frac{k\tau }{\gamma }}\right) }{\mathcal {T}_k(\tau )}. \end{aligned}$$
(A5)

Finally, to find the stochastic action in its extremum \(\mathcal {A}_e[x]\), we only need to substitute u(t) since

$$\begin{aligned} \mathcal {A}_e[x] = \frac{C^2}{4\gamma }\int _0^\tau T(t) e^{\frac{2kt}{\gamma }} \mathrm{{d}}t = \frac{\gamma }{4 \mathcal {T}_k(\tau )}\left( x_0-x_\tau e^{\frac{k\tau }{\gamma }}\right) ^2. \end{aligned}$$
(A6)

Thus, the transitional probability will be given by \(P[...] \sim \exp \left( - \mathcal {A}_e[x]\right) \), with a normalization constant that can be calculated a posteriori.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paraguassú, P.V., Defaveri, L. & Morgado, W.A.M. Heat fluctuations in overdamped non-isothermal processes. Eur. Phys. J. B 96, 22 (2023). https://doi.org/10.1140/epjb/s10051-023-00490-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-023-00490-6

Navigation