Skip to main content
Log in

Heat Out of Equilibrium Driven by Potential Pulling Beyond the Overdamped Limit

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We investigate heat accumulated for a long period time in nonequilibrium motion of a colloid under a potential with center pulled by a constant velocity. Heat and work have the same average value in steady state, but the distribution functions for thermal fluctuations are different. Difference comes from everlasting memory of initial high energy on total amount of accumulated heat. As a result, the positive tail of the heat distribution exhibits a distinct correction to the large deviation function, compared to a usual logarithmic correction. Mathematically, difference originates from the singularity in the generating function, the Fourier transform, of the distribution function and makes usual saddle point approximation not valid. We use the modified saddle point approximation technique to compute the heat distribution function. We find the heat distribution for the underdamped case and find the correction to large deviation function more predominant than for the overdamped case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. J. Evans, E. G. D. Cohen and G. P. Morriss, Phys. Rev. Lett. 71, 2401 (1993).

    Article  ADS  Google Scholar 

  2. D. J. Evans and D. J. Searles, Phys. Rev. E 50, 1645 (1994).

    Article  ADS  Google Scholar 

  3. G. Gallavotti and E. G. D. Cohen, Phys. Rev. Lett. 74, 2694 (1995); J. Stat. Phys. 80, 931 (1995).

    Google Scholar 

  4. C. Jarzynski, Phys. Rev. Lett. 78, 2690 (1997).

    Article  ADS  Google Scholar 

  5. C. Jarzynski, Phys. Rev. E 56, 5018 (1997).

    Article  ADS  Google Scholar 

  6. G. E. Crooks, Phys. Rev. E 60, 2721 (1999).

    Article  ADS  Google Scholar 

  7. J. Kurchan, J. Phys. A: Math. Gen. 31, 3719 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  8. J. L. Lebowitz and H. Spohn, J. Stat. Phys. 95, 333 (1999).

    Article  ADS  Google Scholar 

  9. T. Speck and U. Seifert, J. Phys. A 38, L581 (2005)

    Article  ADS  Google Scholar 

  10. U. Seifert, Phys. Rev. Lett. 95, 040602 (2005).

    Article  ADS  Google Scholar 

  11. M. Esposito and C. Van den Broeck, Phys. Rev. Lett. 104, 090601 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  12. G. M. Wang, E. M. Sevick, E. Mittag, D. J. Searles and D. J. Evans, Phys. Rev. Lett. 89, 050601 (2002).

    Article  ADS  Google Scholar 

  13. D. M. Carberry, J. C. Reid, G. M. Wang, E. M. Sevick, D. J. Searles and D. J. Evans, Phys. Rev. Lett. 92, 140601 (2004).

    Article  ADS  Google Scholar 

  14. F. Douarche, S. Joubaud, N. B. Garnier, A. Petrosyan and S. Ciliberto, Phys. Rev. Lett. 97, 140603 (2006).

    Article  ADS  Google Scholar 

  15. J. R. Gomez-Solano, L. Bellon, A. Petrosyan and S. Ciliberto, Europhys. Lett. 89, 60003 (2010).

    Article  ADS  Google Scholar 

  16. S. Ciliberto, S. Joubaud and A. Petrosyan, J. Stat. Mech. 2010, P12003 (2010).

    Article  Google Scholar 

  17. D. Y. Lee, C. Kwon and H. K. Pak, Phys. Rev. Lett. 114, 060603 (2015).

    Article  ADS  Google Scholar 

  18. G. M. Wang, J. C. Reid, D. M. Carberry, D. R. M. Williams, E. M. Sevick and D. J. Evans, Phys. Rev. E 71, 046142 (2005).

    Article  ADS  Google Scholar 

  19. G. Pesce, G. Volpe, A. Imparato, G. Rusciano and A. Sasso, J. Optics 13, 044006 (2011).

    Article  ADS  Google Scholar 

  20. R. van Zon and E. G. D. Cohen, Phys. Rev. E 67, 046102 (2003).

    Article  ADS  Google Scholar 

  21. R. van Zon and E. G. D. Cohen, Phys. Rev. Lett. 91, 110601 (2003).

    Article  Google Scholar 

  22. J. Farago, J. Stat. Phys. 107, 781 (2002); Physica A 331, 69 (2004).

    Google Scholar 

  23. P. Visco, J. Stat. Mech. 2006, P06006 (2006).

    Article  Google Scholar 

  24. A. Puglisi, L. Rondoni and A. Vulpiani, J. Stat. Mech. 2006, P08010 (2006).

    Article  Google Scholar 

  25. J. D. Noh and J-M. Park, Phys. Rev. Lett. 108, 240603 (2012).

    Article  ADS  Google Scholar 

  26. K. Kim, C. Kwon and H. Park, Phys. Rev. E 90, 032117 (2014).

    Article  ADS  Google Scholar 

  27. J. S. Lee, C. Kwon and H. Park, Phys. Rev. E 87, 020104(R) (2013).

    Article  ADS  Google Scholar 

  28. J. S. Lee, C. Kwon and H. Park, J. Stat. Mech. 2013, P11002 (2013).

    Article  Google Scholar 

  29. C. Kwon, J. D. Noh and H. Park, Phys. Rev. E 83, 061145 (2011).

    Article  ADS  Google Scholar 

  30. T. Bodineaua and B. Derrida, Comptes Rendus Physique 8, 540 (2007).

    Article  ADS  Google Scholar 

  31. D. Lacoste, A. W. C. Lau and K. Mallick, Phys. Rev. E 78, 011915 (2008).

    Article  ADS  Google Scholar 

  32. K. Saito and A. Dhar, Phys. Rev. Lett. 99, 180601 (2007).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chulan Kwon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwon, C. Heat Out of Equilibrium Driven by Potential Pulling Beyond the Overdamped Limit. J. Korean Phys. Soc. 73, 866–870 (2018). https://doi.org/10.3938/jkps.73.866

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.73.866

Keywords

Navigation