Skip to main content
Log in

Unitary fermions and Lüscher’s formula on a crystal

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

We consider the low-energy particle-particle scattering properties in a periodic simple cubic crystal. In particular, we investigate the relation between the two-body scattering length and the energy shift experienced by the lowest-lying unbound state when this is placed in a periodic finite box. We introduce a continuum model for s-wave contact interactions that respects the symmetry of the Brillouin zone in its regularisation and renormalisation procedures, and corresponds to the naïve continuum limit of the Hubbard model. The energy shifts are found to be identical to those obtained in the usual spherically symmetric renormalisation scheme upon resolving an important subtlety regarding the cutoff procedure. We then particularize to the Hubbard model, and find that for large finite lattices the results are identical to those obtained in the continuum limit. The results reported here are valid in the weak, intermediate and unitary limits. These may be used to significantly ease the extraction of scattering information, and therefore effective interactions in condensed matter systems in realistic periodic potentials. This can achieved via exact diagonalisation or Monte Carlo methods, without the need to solve challenging, genuine multichannel collisional problems with very restricted symmetry simplifications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Huang, and C. N. Yang, Phys. Rev. 105, 767 (1957).

    Article  ADS  MathSciNet  Google Scholar 

  2. E. Fermi, Ricerca Sci. 7, 13 (1936).

    Google Scholar 

  3. E. Epelbaum, H. W. Hammer, and U. G. Meissner, Rev. Mod. Phys. 81, 1773 (2009).

    Article  ADS  Google Scholar 

  4. M. Lüscher, Commun. Math. Phys. 105, 153 (1986).

    Article  ADS  Google Scholar 

  5. S. Weinberg, Phys. Lett. B 251, 288 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  6. D. R. Phillips, S. R. Beane, and T. D. Cohen, Nucl. Phys. A 631, 447 (1998)

    Article  ADS  Google Scholar 

  7. D. B. Kaplan, M. J. Savage, and M. B. Wise, Phys. Lett. B 424, 390 (1998); Nucl. Phys. B 534, 329 (1998).

    Article  ADS  Google Scholar 

  8. S. R. Beane, P. F. Bedaque, A. Parreno, and M. J. Savage, Phys. Lett. B 585, 106 (2004).

    Article  ADS  Google Scholar 

  9. S. R. Beane, P. F. Bedaque, K. O. Orginos, and M. J. Savage, Phys. Rev. Lett. 97, 012001 (2006).

    Article  ADS  Google Scholar 

  10. Z. Yu, G. Baym, and C. J. Pethick, J. Phys. B-At. Mol. Opt. Phys. 44, 195207 (2011).

    Article  ADS  Google Scholar 

  11. M. Valiente, Phys. Rev. A 81, 042102 (2010)

    Article  ADS  Google Scholar 

  12. M. Valiente, and D. Petrosyan, J. Phys. B-At. Mol. Opt. Phys. 42, 121001 (2009); ibid. 41, 161002 (2008)

    Article  ADS  Google Scholar 

  13. M. Valiente, M. Küster, and A. Saenz, EPL 92, 10001 (2010)

    Article  ADS  Google Scholar 

  14. M. Valiente, and K. Mølmer, Phys. Rev. A 84, 053628 (2011)

    Article  ADS  Google Scholar 

  15. M. Valiente, and N. T. Zinner, Few-Body Syst. 56, 845 (2015).

    Article  ADS  Google Scholar 

  16. A. L. Fetter, and J. D. Walecka, Quantum Theory of Many-Particle Systems (Dover, New York, 2003).

    MATH  Google Scholar 

  17. S. Tan, Ann. Phys. 323, 2952 (2008).

    Article  ADS  Google Scholar 

  18. M. Valiente, Phys. Rev. A 85, 014701 (2012).

    Article  ADS  Google Scholar 

  19. G. N. Watson, Quart. J. Math. Oxford Ser. 10, 266 (1939).

    Article  ADS  MathSciNet  Google Scholar 

  20. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).

    Article  ADS  Google Scholar 

  21. L. Tarruell, D. Greif, T. Uehlinger, G. Jotzu, and T. Esslinger, Nature 483, 303 (2012).

    Article  ADS  Google Scholar 

  22. J. Hofmann, E. Barnes, and S. Das Sarma, Phys. Rev. Lett. 113, 105502 (2014).

    Article  ADS  Google Scholar 

  23. S. R. Beane, and M. J. Savage, Phys. Rev. D 90, 074511 (2014).

    Article  ADS  Google Scholar 

  24. C. Gaul, F. Dominguez-Adame, F. Sols, and I. Zapata, Phys. Rev. B 89, 045420 (2014).

    Article  ADS  Google Scholar 

  25. G. A. Baker, Phys. Rev. C 60, 05311 (1999).

    Article  Google Scholar 

  26. M. G. Endres, D. B. Kaplan, J. W. Lee, and A. Nicholson, Phys. Rev. A 87, 023615 (2013).

    Article  ADS  Google Scholar 

  27. J. E. Drut, Phys. Rev. A 86, 013604 (2012).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolaj T. Zinner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valiente, M., Zinner, N.T. Unitary fermions and Lüscher’s formula on a crystal. Sci. China Phys. Mech. Astron. 59, 114211 (2016). https://doi.org/10.1007/s11433-016-0205-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-016-0205-x

Keywords

PACS number(s)

Navigation