Skip to main content
Log in

Trivalent Atom Defect-Complex Induced Defect Levels in Germanium for Enhanced Ge‑Based Device Performance

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Defect complexes have a significant impact on the structural, electronic, optical and electrical properties of semiconductors. Several defect complexes formed by n-type and p-type atoms in Ge have been implemented for the development of improved modern microelectronic devices. However, there is no reported study on the substitutional-interstitial defect complexes formed by trivalent atoms in Ge. This paper presents a hybrid density functional theory study of the structural, electronic, formation and defect levels induced by the trivalent substitutional-interstitial (B\(_\textrm{Ge}\)B\(_\textrm{i}\), Al\(_\textrm{Ge}\)Al\(_\textrm{i}\), Ga\(_\textrm{Ge}\)Ga\(_\textrm{i}\) and In\(_\textrm{Ge}\)In\(_\textrm{i}\)) defect complexes in Ge. The formation energy results showed that the trivalent substitutional-interstitial defect complexes in Ge were formed with relatively low energy. Ga\(_\textrm{Ge}\)Ga\(_\textrm{i}\) under equilibrium conditions is the most energetically favourable, with a formation energy of 3.95 eV. All trivalent atoms are bound with their respective substitutional and interstitial atoms without dissociation. With respect to their ability to form as a defect cluster, the In\(_\textrm{Ge}\)In\(_\textrm{i}\) is the most stable defect complex, with a binding energy of 2.91 eV. Except for the Ga\(_\textrm{Ge}\)Ga\(_\textrm{i}\), all studied defect complexes are electrically active. The B\(_\textrm{Ge}\)B\(_\textrm{i}\) and Al\(_\textrm{Ge}\)Al\(_\textrm{i}\) induced a single acceptor level, while the In\(_\textrm{Ge}\)In\(_\textrm{i}\) induced active donor levels. The acceptor defect level induced by the B\(_\textrm{Ge}\)B\(_\textrm{i}\) is deep, and that of the Al\(_\textrm{Ge}\)Al\(_\textrm{i}\) is shallow, close to the conduction band. The results of this study are important, as they provide theoretical insights into the experimental characterization of the substitutional-interstitial defect complexes formed by trivalent impurities in germanium, which could help to improve Ge-based microelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. P. Rajesh, Some Studies on the Metallic Ion Implanted Semiconductors and their Possible Applications. Ph.D. thesis, Jadavpur University (2015).

  2. W.A.. Jabbara, A. Mahmood, and J. Sultan, Modeling and characterization of optimal nano-scale channel dimensions for fin field effect transistor based on constituent semiconductor materials. TELKOMNIKA Telecommun. Comput. Electron. Control 20(1), 221 (2022).

    Google Scholar 

  3. J. Yang, K. Liu, X. Chen, and D. Shen, Recent advances in optoelectronic and microelectronic devices based on ultrawide-bandgap semiconductors. Prog. Quantum Electron. 83(100), 397 (2022).

    Google Scholar 

  4. S. Chander, S.K. Sinha, R. Chaudhary, and A. Singh, Ge-source based l-shaped tunnel field effect transistor for low power switching application. Silicon 14, 1 (2021).

    Google Scholar 

  5. E. Igumbor, Hybrid functional study of point defects in germanium. Ph.D. thesis, University of Pretoria (2017).

  6. N. Tillner, C. Frankerl, F. Nippert, M.J. Davies, C. Brandl, R. Lösing, M. Mandl, H.J. Lugauer, R. Zeisel, A. Hoffmann, and A. Waag, Point defect-induced UV-C absorption in aluminum nitride epitaxial layers grown on sapphire substrates by metal-organic chemical vapor deposition. Phys. Status solidi b 257(12), 2000278 (2020).

    Article  CAS  ADS  Google Scholar 

  7. E. Ekimov, M. Kondrin, V. Krivobok, A. Khomich, I. Vlasov, R. Khmelnitskiy, T. Iwasaki, and M. Hatano, Effect of Si, Ge and Sn dopant elements on structure and photoluminescence of nano-and microdiamonds synthesized from organic compounds. Diam. Relat. Mater. 93, 75 (2019).

    Article  CAS  ADS  Google Scholar 

  8. A. Bolshakov, V. Fedorov, K.Y. Shugurov, A. Mozharov, G. Sapunov, I. Shtrom, M. Mukhin, A. Uvarov, G. Cirlin, and I. Mukhin, Effects of the surface preparation and buffer layer on the morphology, electronic and optical properties of the Gan nanowires on Si. Nanotechnology 30(39), 395602 (2019).

    Article  CAS  PubMed  Google Scholar 

  9. V.E. Gora, F.D. Auret, H.T. Danga, S.M. Tunhuma, C. Nyamhere, E. Igumbor, and A. Chawanda, Barrier height inhomogeneities on Pd/n-4H-SiC schottky diodes in a wide temperature range. Mater. Sci. Eng. B 247(114), 370 (2019).

    Google Scholar 

  10. J. Lyons, A. Janotti, and C. Van de Walle, Carbon impurities and the yellow luminescence in Gan. Appl. Phys. Lett. 97(15), 152108 (2010).

    Article  ADS  Google Scholar 

  11. A. Hernandez, M.M. Islam, P. Saddatkia, C. Codding, P. Dulal, S. Agarwal, A. Janover, S. Novak, M. Huang, T. Dang, and M. Snure, MOCVD growth and characterization of conductive homoepitaxial Si-doped Ga2O3. Res. Phys. 25, 104167 (2021).

    Google Scholar 

  12. A.E. Rugar, H. Lu, C. Dory, S. Sun, P.J. McQuade, Z.X. Shen, N.A. Melosh, and J. Vuckovic, Generation of tin-vacancy centers in diamond via shallow ion implantation and subsequent diamond overgrowth. Nano Lett. 20(3), 1614 (2020).

    Article  CAS  PubMed  ADS  Google Scholar 

  13. E.A. Anber, D. Foley, A.C. Lang, J. Nathaniel, J.L. Hart, M.J. Tadjer, K.D. Hobart, S. Pearton, and M.L. Taheri, Structural transition and recovery of Ge implanted \(\beta \)-Ga2O3. Appl. Phys. Lett. 12, 117(15) (2020).

  14. S.R. Christopoulos, E. Sgourou, R. Vovk, A. Chroneos, and C. Londos, Isovalent doping and the CiOi defect in germanium. J. Mater. Sci. Mater. Electron. 29(5), 4261 (2018).

    Article  CAS  Google Scholar 

  15. M. El Kurdi, M. Prost, A. Ghrib, S. Sauvage, X. Checoury, G. Beaudoin, I. Sagnes, G. Picardi, R. Ossikovski, and P. Boucaud, Direct band gap germanium microdisks obtained with silicon nitride stressor layers. ACS Photon. 3(3), 443 (2016).

    Article  Google Scholar 

  16. Q. Wei, J. Song, C. Zhou, W. Bao, Y. Miao, H. Hu, H. Zhang, and B. Wang, Study of energy band modulation of Ge-based material system for monolithic optoelectronic integration chips. Mater. Express 7(5), 369 (2017).

    Article  CAS  ADS  Google Scholar 

  17. U. Södervall, M. Friesel, and A. Lodding, Atomic transport of trivalent impurities in silicon: diffusion, isotope effects, activation volumes. J. Chem. Soc. Faraday Trans. 86(8), 1293 (1990).

    Article  Google Scholar 

  18. P. Gong, Y.J. Li, Y.H. Jia, Y.L. Li, S.L. Li, X.Y. Fang, and M.S. Cao, Comparative study on transport properties and scattering mechanism of group III doped SiC nanotube. Phys. Lett. A 382(35), 2484 (2018).

    Article  CAS  ADS  Google Scholar 

  19. M. Amato, T. Kaewmaraya, and A. Zobelli, Extrinsic doping in group IV hexagonal-diamond-type crystals. J. Phys. Chem. C 124(31), 17290 (2020).

    Article  CAS  Google Scholar 

  20. C.R. Helms and E.H. Poindexter, The silicon-silicon dioxide system: its microstructure and imperfections. Rep. Prog. Phys. 57(8), 791 (1994).

    Article  CAS  ADS  Google Scholar 

  21. S. Suthaharan, P. Iyngaran, N. Kuganathan, and A. Chroneos, Defects, diffusion and dopants in the ceramic mineral lime-feldspar. J. Asian Ceram. Soc. 9(2), 570 (2021).

    Article  Google Scholar 

  22. E. Igumbor, E. Omotoso, and W.E. Meyer, In Nano Hybrids and Composites, vol. 16 (Trans Tech Publ), pp. 47–51 (2017).

  23. E. Igumbor, R.E. Mapasha, and W.E. Meyer, Ab_initio study of aluminium impurity and interstitial-substitutional complexes in Ge using a hybrid functional (HSE). J. Electron. Mater. 46(7), 3880 (2017).

    Article  CAS  ADS  Google Scholar 

  24. J. Adey, R. Jones, D. Palmer, P. Briddon, and S. Öberg, Theory of boron-vacancy complexes in silicon. Phys. Rev. B 71(16), 165211 (2005).

    Article  ADS  Google Scholar 

  25. E. Igumbor, G. Dongho-Nguimdo, R.E. Mapasha, and W.E. Meyer, Electronic properties and defect levels induced by group III substitution-interstitial complexes in Ge. J. Mater. Sci. 54(15), 10798 (2019).

    Article  CAS  ADS  Google Scholar 

  26. P. Deák, A. Gali, A. Sólyom, A. Buruzs, and T. Frauenheim, Electronic structure of boron-interstitial clusters in silicon. J. Phys. Condens. Matter 17(22), S2141 (2005).

    Article  ADS  Google Scholar 

  27. J. Weber, W. Koehl, J. Varley, A. Janotti, B. Buckley, C. Van de Walle, and D. Awschalom, Defects in SiC for quantum computing. J. Appl. Phys. 109(10), 102417 (2011).

    Article  ADS  Google Scholar 

  28. E. Igumbor, H.T. Danga, E. Omotoso, and W.E. Meyer, Defect levels induced by double substitution of b and n in 4H-SiC. Nucl. Instrum. Methods Phys. Res. Sect. B 442, 41 (2019).

    Article  CAS  ADS  Google Scholar 

  29. D. Sprouster, C. Campbell, S. Buckman, G. Impellizzeri, E. Napolitani, S. Ruffell, and J. Sullivan, Defect complexes in fluorine-implanted germanium. J. Phys. D Appl. Phys. 46(50), 505310 (2013).

    Article  Google Scholar 

  30. J. Kujala, T. Südkamp, J. Slotte, I. Makkonen, F. Tuomisto, and H. Bracht, Vacancy-donor complexes in highly n-type Ge doped with as, p and sb. J. Phys. Condens. Matter 28(33), 335801 (2016).

    Article  CAS  PubMed  Google Scholar 

  31. A. Abiona, Palladium-defect complexes in germanium: experimental and density functional theory studies of defect pairing in group IVsemiconductors. Ph.D. thesis, UNSW Sydney (2014).

  32. J. Heyd, G.E. Scuseria, and M. Ernzerhof, Hybrid functionals based on a screened coulomb potential. J. Chem. Phys. 118(18), 8207 (2003).

    Article  CAS  ADS  Google Scholar 

  33. G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54(16), 11169 (1996).

    Article  CAS  ADS  Google Scholar 

  34. G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59(3), 1758 (1999).

    Article  CAS  ADS  Google Scholar 

  35. P. Deák, B. Aradi, T. Frauenheim, E. Janzén, and A. Gali, Accurate defect levels obtained from the HSE06 range-separated hybrid functional. Phys. Rev. B 81(15), 153203 (2010).

    Article  ADS  Google Scholar 

  36. E. Igumbor, R.C. Andrew, and W.E. Meyer, Rare earth interstitials in Ge: a hybrid density functional theory study. J. Electron. Mater. 46(2), 1022 (2017).

    Article  CAS  ADS  Google Scholar 

  37. P. Śpiewak, J. Vanhellemont, K. Sueoka, K. Kurzydłowski, and I. Romandic, Ab-initio simulation of self-interstitial in germanium. Mater. Sci. Semicond. Process. 11(5–6), 328 (2008).

    Article  Google Scholar 

  38. H. Tahini, A. Chroneos, R. Grimes, U. Schwingenschlögl, and H. Bracht, Diffusion of e centers in germanium predicted using GGA+ Uapproach. Applied Physics Letters 99(7) (2011).

  39. E. Igumbor, K. Obodo, and W.E. Meyer, Ab initio study of MgSe self-interstitial (Mgi and Sei). Solid State Phenom. 242, 440 (2015).

    Article  Google Scholar 

  40. F. Morin and J.P. Maita, Conductivity and hall effect in the intrinsic range of germanium. Phys. Rev. 94(6), 1525 (1954).

    Article  CAS  ADS  Google Scholar 

  41. E. Igumbor, O. Olaniyan, G.M. Dongho-Nguimdo, R. Mapasha, S. Ahmad, E. Omotoso, and W.E. Meyer, Electronic properties and defect levels induced by n/p-type defect-complexes in Ge. Mater. Sci. Semicond. Process. 150, 106906 (2022).

    Article  CAS  Google Scholar 

  42. C. Freysoldt, J. Neugebauer, and C.G. Van de Walle, Electrostatic interactions between charged defects in supercells. Phys. Status Solidi b 248(5), 1067 (2011).

    Article  CAS  ADS  Google Scholar 

  43. E. Igumbor, C. Ouma, G. Webb, and W. Meyer, Ab-initio study of germanium di-interstitial using a hybrid functional (HSE). Physica B 480, 191 (2016).

    Article  CAS  ADS  Google Scholar 

  44. J.C. Slater, Atomic radii in crystals. J. Chem. Phys. 41(10), 3199 (1964).

    Article  CAS  ADS  Google Scholar 

  45. L.C.T. Cao, L. Hakim, and S.H. Hsu. In Characteristics and Applications of Boron (IntechOpen), (2022).

  46. K. Choe, M. Hogsed, N. Miguel, J. McClory, and J. Kouvetakis, Displacement Damage Effects in Germanium tin Leds. Air Force Institute of Technology Wright-Patterson AFB United States: Tech. rep (2020).

    Google Scholar 

Download references

Acknowledgments

This work is based on research supported in part by the National Research Foundation (NRF) of South Africa (Grant unique reference number 98961). The opinions, findings and conclusions expressed are those of the authors, and the NRF accepts no liability whatsoever in this regard. Emmanuel Igumbor is grateful to the University of Johannesburg for funding and the Center for High Performance Computing (CHPC) Cape Town for providing computational resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel Igumbor.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Igumbor, E., Dongho-Nguimdo, M., Mapasha, E. et al. Trivalent Atom Defect-Complex Induced Defect Levels in Germanium for Enhanced Ge‑Based Device Performance. J. Electron. Mater. 53, 1903–1912 (2024). https://doi.org/10.1007/s11664-023-10902-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10902-z

Keywords

Navigation