Skip to main content

Advertisement

Log in

Structural transition from marcasite to pyrite phase in FeSe2 under high pressure: a first-principles study

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Based on density functional theory, first-principles simulations and calculations are carried out to study the structural stability and electronic properties of FeSe2 under high pressure. Present theoretical calculations not only reproduce successfully the lattice constants, bulk modulus, and indirect band gap of both the marcasite and pyrite phases at ambient conditions, but also predict a first-order phase transition from the marcasite to pyrite structure at 9 GPa under compression. Based on elastic constants and phonon spectra calculations and detailed analysis of the geometry structures, a possible mechanism of the structural transformation from marcasite to pyrite structure is presented. Furthermore, pressure-induced band gap enlargement is observed in the marcasite phase, which is benefit for the optical applications. By contrast, the band gap of the pyrite phase gradually decreases along with the compression, and finally closes up due to the broadening of bandwidths.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Soulard, X. Rocquefelte, P.E. Petit, M. Evain, S. Jobic, J.P. Itié, P. Munsch, H.J. Koo, M.H. Whangbo, Inorg. Chem. 43, 1943 (2004)

    Google Scholar 

  2. M.A. ElGhazali, P.G. Naumov, H. Mirhosseini, V. Süß, L. Müchler, W. Schnelle, C. Felser, S.A. Medvedev, Phys. Rev. B 96, 060509(R) (2017)

    ADS  Google Scholar 

  3. W. Lei, S.L. Zhang, G. Heymann, X. Tang, J.F. Wen, X.J. Zheng, G.H. Hu, X. Ming, J. Mater. Chem. C 7, 2096 (2019)

    Google Scholar 

  4. M.A. ElGhazali, P.G. Naumov, Q. Mu, V. Süß, A.O. Baskakov, C. Felser, S.A. Medvedev, Phys. Rev. B 100, 014507 (2019)

    ADS  Google Scholar 

  5. W. Lei, W. Wang, X. Ming, S.L. Zhang, G. Tang, X.J. Zheng, H. Li, C. Autieri, Phys. Rev. B 101, 205149 (2020)

    ADS  Google Scholar 

  6. R.C. Xiao, W.J. Lu, D.F. Shao, J.Y. Li, M.J. Wei, H.Y. Lv, P. Tong, X.B. Zhu, Y.P. Sun, J. Mater. Chem. C 5, 4167 (2017)

    Google Scholar 

  7. W. Lei, B. Cai, H.F. Zhou, G. Heymann, X. Tang, S.L. Zhang, X. Ming, Nanoscale 11, 12317 (2019)

    Google Scholar 

  8. W. Wang, W. Lei, X. Zheng, H. Li, X. Tang, X. Ming, Chin. Phys. B 29, 056201 (2020)

    ADS  Google Scholar 

  9. H. Peelaers, C.G. VandeWalle, J. Phys. Chem. C 118, 12076 (2014)

    Google Scholar 

  10. B. Liu, Y.H. Han, C.X. Gao, Y.Z. Ma, G. Peng, B.J. Wu, C.L. Liu, Y. Wang, T.J. Hu, X.Y. Cui, W.B. Ren, Y. Li, N.N. Su, H.W. Liu, G.T. Zou, J. Phys. Chem. C 114, 14251 (2010)

    Google Scholar 

  11. T. Harada, J. Phys. Soc. Jpn. 67, 1352 (1998)

    ADS  Google Scholar 

  12. V. Eyert, K.H. Höck, S. Fiechter, H. Tributsch, Phys. Rev. B 57, 6350 (1998)

    ADS  Google Scholar 

  13. G. Kaur, M. Kaur, A. Thakur, A. Kumar, J. Clust. Sci. 31, 899 (2020)

    Google Scholar 

  14. K. Zhang, Z. Hu, X. Liu, Z.L. Tao, J. Chen, Adv. Mater. 27, 3305 (2015)

    Google Scholar 

  15. S.S. Huang, Q.Q. He, W.L. Chen, J.T. Zai, Q.Q. Qiao, X.F. Qian, Nano Energy 15, 205 (2015)

    Google Scholar 

  16. W.J. Wang, X. Pan, W.Q. Liu, B. Zhang, H.W. Chen, X.Q. Fang, J.X. Yao, S.Y. Dai, Chem. Commun. 50, 2618 (2014)

    Google Scholar 

  17. A. Ghosh, R. Thangave, Indian J. Phys. 91, 1339 (2017)

    ADS  Google Scholar 

  18. A. Rahman, D.C. Zhang, M.U. Rehman, M. Zhang, X.Q. Wang, R.C. Dai, Z.P. Wang, X.P. Tao, Z.M. Zhang, J. Phys: Condens. Matter 32, 035808 (2019)

    ADS  Google Scholar 

  19. A. Mami, K.B. Messaoud, O. Kamoun, A. Mami, J. Mater. Sci: Mater. Electron 30, 6050 (2019)

    Google Scholar 

  20. J.D. Vaughan, K.M. Rosso, Rev. Mineral. Geochem. 61, 264 (2006)

    Google Scholar 

  21. I. Dodony, M. Posfal, P.R. Buseck, Am. Miner. 81, 119 (1996)

    ADS  Google Scholar 

  22. R.P. Richards, E.L. Clopton, J.A. Jaszczak, Mineral. Rec. 26, 129 (1995)

    Google Scholar 

  23. G. Fischer, Can. J. Phys. 36, 1435 (1958)

    ADS  Google Scholar 

  24. F. Hulliger, Helv. Phys. Acta 35, 535 (1962)

    Google Scholar 

  25. T.A. Bither, R.J. Bouchard, W.H. Cloud, P.C. Donohue, W.J. Siemons, Inorg. Chem. 7, 2208 (1968)

    Google Scholar 

  26. T.A. Bither, C.T. Prewitt, J.L. Gilison, P.E. Bierstedt, R.B. Flippen, H.S. Young, Solid State Commun. 4, 533 (1966)

    ADS  Google Scholar 

  27. Y.Z. Dong, Y.F. Zheng, H. Duan, Y.F. Sun, Y.H. Chen, Mater. Lett. 59, 2398 (2005)

    Google Scholar 

  28. N. Hamdadou, A. Khelil, M. Morsli, J.C. Bernade, Vacuum 77, 151 (2005)

    ADS  Google Scholar 

  29. H.J. Kwon, S. Thanikaikarasan, T. Mahalingam, K.H. Park, C. Sanjeeviraja, Y.D. Kim, J. Mater. Sci: Mater. Electron. 19, 1086 (2008)

    Google Scholar 

  30. A. Liu, X.Y. Chen, Z.J. Zhang, Y. Jiang, C.W. Shi, Solid State Commun. 138, 538 (2006)

    ADS  Google Scholar 

  31. G.Z. Qiu, Q. Xiao, Y.H. Hu, Comput. Mater. Sci. 29, 89 (2004)

    Google Scholar 

  32. P. Lazic, R. Armiento, F.W. Herbert, R. Chakraborty, R. Sun, M.K.Y. Chan, K. Hartman, T. Buonassisi, B. Yildiz, G. Ceder, J. Phys: Condens. Matter 25, 465801 (2013)

    ADS  Google Scholar 

  33. N. Hamdadou, J.C. Bern’ede, A. Khelil, J. Cryst. Growth 241, 313 (2002)

    ADS  Google Scholar 

  34. V.K. Gudelli, V. Kanchana, S. Appalakondaiah, G. Vaitheeswaran, M.C. Valsakumar, J. Phys. Chem. C 117, 21120 (2013)

    Google Scholar 

  35. S.Q. Liu, Y.B. Li, J.L. Yang, H.Q. Tian, B.J. Zhu, Y.L. Shi, Phys. Chem. Minerals 41, 189 (2014)

    ADS  Google Scholar 

  36. X.H. Tian, J.M. Zhang, J. Phys. Chem. Solids 118, 88 (2018)

    ADS  Google Scholar 

  37. I. Harran, Y.Z. Chen, H.Y. Wang, H.T. Li, Y.C. Li, L. Tao, J. Alloys Compd. 710, 267 (2017)

    Google Scholar 

  38. P. Cervantes, Z. Slanic, F. Bridges, E. Knittle, Q. Williams, J. Phys. Chem. Solids 63, 1927 (2002)

    ADS  Google Scholar 

  39. V.K. Gudelli, V. Kanchana, G. Vaitheeswaran, M.C. Valsakumar, S.D. Mahanti, RSC Adv. 4, 9424 (2014)

    Google Scholar 

  40. K. Momma, Koichi, F. Izumi, J. Appl. Crystallogr. 44, 1272 (2011)

    Google Scholar 

  41. E.P. Blöchl, Phys. Rev. B 50, 17953 (1994)

    ADS  Google Scholar 

  42. G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999)

    ADS  Google Scholar 

  43. G. Kresse, J. Furthmüller, Phys. Rev. B 54, 11169 (1996)

    ADS  Google Scholar 

  44. P.J. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    ADS  Google Scholar 

  45. A. Togo, I. Tanaka, Scr. Mater. 108, 1 (2015)

    Google Scholar 

  46. F. Birch, Phys. Rev. Lett. 71, 809 (1947)

    ADS  Google Scholar 

  47. X.H. Tian, J.M. Zhang, Superlattice Microstruct. 119, 201 (2018)

    ADS  Google Scholar 

  48. B. Lavina, R.T. Downs, S. Sinogeikin, Crystals 8, 289 (2018)

    Google Scholar 

  49. A. Kjekshus, T. Rakke, A.F. Andresen, Acta Chem. Scand. 28, 996 (1974)

    Google Scholar 

  50. J. Pickardt, B. Reuter, E. Riedel, J. Söchtig, J. Solid State Chem. 15, 366 (1975)

    ADS  Google Scholar 

  51. B.G. Ganga, C. Ganeshraj, A.G. Krishna, P.N. Santhosh, arXiv:1303.1381v1 (2013)

  52. M. Born, K. Huang,Dynamics Theory of Crystal Lattices (Oxford University Press, Oxford, UK, 1954)

  53. Z.J. Wu, E.J. Zhao, H.P. Xiang, X.F. Hao, X.J. Liu, J. Meng, Phys. Rev. B 76, 054115 (2007)

    ADS  Google Scholar 

  54. S.L. Dudarev, G.A. Botton, S.Y. Savrasov, C.J. Humphreys, A.P. Sutton, Phys. Rev. B 57, 1505 (1998)

    ADS  Google Scholar 

  55. W. Setyawan, S. Curtarolo, Comput. Mater. Sci. 49, 299 (2010)

    Google Scholar 

  56. P. Xiao, X.L. Fan, L.M. Liu, W.M. Lau, Phys. Chem. Chem. Phys. 16, 24466 (2014)

    Google Scholar 

  57. P. Xiao, X.L. Fan, H. Zhang, X.L. Fang, L.M. Liu, J. Alloys Compd. 629, 43 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaojun Zheng or Xing Ming.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, M., Wu, J., Zheng, X. et al. Structural transition from marcasite to pyrite phase in FeSe2 under high pressure: a first-principles study. Eur. Phys. J. B 93, 179 (2020). https://doi.org/10.1140/epjb/e2020-10163-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2020-10163-9

Keywords

Navigation