Skip to main content

Advertisement

Log in

First-principle calculations of the structural, vibrational, mechanical, electronic, and optical properties of ε-O8 under pressure

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The vibrational, mechanical, electronic, and optical properties of the ε-O8 phase in the pressure range of 11.4–70 GPa were studied by the first-principle calculation method. The phonon dispersion curves have a tiny virtual frequency at 60 GPa, which indicates that ε-O8 is dynamically unstable at 60 GPa. However, the 3-BM EOS demonstrates that the unit cell is stable up to 70 GPa. It has been shown that ε-O8 remains ductile within the whole applied pressure range. Concurrently, we calculated the variation of the band gap of ε-O8 in the pressure range of 11.4–70 GPa. The results show that the band gap of ε-O8 decreases with increasing pressure. Notably, the band gap disappears within the range of 50–60 GPa, which reveals that the metallic phase transition occurs within this pressure range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

Data available on request from the authors.

Code availability

N/A.

References

  1. Elatresh SF, Bonev SA (2020) Phys Chem Chem Phys 22:12577

    Article  CAS  PubMed  Google Scholar 

  2. Anh LT, Wada M, Fukui H, Kawatsu T, Iitaka T (2019) Sci Rep 9:8731

    Article  PubMed  PubMed Central  Google Scholar 

  3. Driver KP, Soubiran F, Zhang S, Militzer B (2015) J Chem Phys 143:164507

    Article  CAS  PubMed  Google Scholar 

  4. Ochoa-Calle AJ, Zicovich-Wilson CM, Ramírez-Solís A (2015) Phys Rev B 92:085148

    Article  Google Scholar 

  5. Freiman Y, Jodl H (2004) Phys Rep 401:1

    Article  CAS  Google Scholar 

  6. Yurtsevena H, Tari O (2017) Optik 128:113

    Article  Google Scholar 

  7. Gorelli FA, Santoro M, Ulivi L, Hanfland M (2002) Phys Rev B 65:172106

    Article  Google Scholar 

  8. Datchi F, Weck G (2014) Z Kristallogr 229:135

    CAS  Google Scholar 

  9. Akahama Y, Kawamura H, H¨ausermann D, Hanfland M, Shimomura O (1995) Phys Rev Lett 74:4690.

  10. Fujihisa H, Akahama Y, Kawamura H, Ohishi Y, Shimomura O, Yamawaki H, Sakashita M, Gotoh Y, Takeya S, Honda K (2006) Phys Rev Lett 97:085503

    Article  PubMed  Google Scholar 

  11. Ma YM, Oganov AR, Glass CW (2007) Phys Rev B 76:064101

    Article  Google Scholar 

  12. Liu WH, Liu QJ, Zhong M, Gan YD, Liu FS, Li XH, Tang B (2022) Acta Mater 236:118137

    Article  CAS  Google Scholar 

  13. Segall MD, Lindan PJD, Probert MJ, Pickard CJ, Hasnip PJ, Clark SJ, Payne MC (2002) J Phys: Condens Matter 14:2717

    CAS  Google Scholar 

  14. Clark SJ, Segall MD, Pickard CJ, Hasnip PJ, Probert MIJ, Refson K, Payne MC (2005) Z Kristallogr 220:567

    Article  CAS  Google Scholar 

  15. Troullier N, Martins JL (1991) Phys Rev B 43:1993

    Article  CAS  Google Scholar 

  16. Ernzerhofa M, Scuseria GE (1999) J Chem Phys 110:5029

    Article  Google Scholar 

  17. Shanno DF (1970) Math Comput 24:647

    Article  Google Scholar 

  18. Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188

    Article  Google Scholar 

  19. Liu YH, Liu ZM, Ma YM, He Z, Tian FB, Cui T, Liu BB, Zou GT (2007) Chin Phys Lett 11:3203

    Google Scholar 

  20. Born M, Huang K (2006) Lattice dynamics theory. Peking University Press.

  21. Deng Y, Wang RZ, Xu LC, Fang H, Yan H (2011) Acta Phys Sin 60:117309

    Article  Google Scholar 

  22. Liu QJ, Zheng R, Liu FS, Liu ZT (2015) J Alloys Compounds 631:192.

  23. Edrees SJ, Shukur MM, Obeid MM (2018) Comput Condensed Matter 14:20

    Article  Google Scholar 

  24. Hill R (1952) Proc Phys Soc Section A 65:349

    Article  Google Scholar 

  25. Lia YL, Liu YR, Yang J (2020) Opt Laser Technol 122:105875

    Article  Google Scholar 

  26. Dreger ZA, Stash AI, Yu ZG, Chen YS, Tao YC, Gupta YM (2016) J Phys Chem C 120:27600

    Article  CAS  Google Scholar 

  27. Kholil MI, Bhuiyan MTH (2021) J Phys Chem Solids 154:110083

    Article  CAS  Google Scholar 

  28. Zhong M, Zeng W, Liu FS, Fan DH, Tang B, Liu QJ (2022) Mater Today Phys 22:100583

    Article  CAS  Google Scholar 

  29. Li YH, Lopez DM, Vargas VR, Zhang JN, Yang KS (2020) J Chem Phys 152:084106

    Article  CAS  PubMed  Google Scholar 

  30. Gao J, Zeng W, Tang B, Zhong M, Liu QJ (2021) Mater Sci Semicond Process 121:105447

    Article  CAS  Google Scholar 

  31. Islam MN, Hadi MA, Podder J (2019) AIP Adv 9:125321

    Article  Google Scholar 

  32. Sun J, Wang HT, Ming NB (2004) Appl Phys Lett 84:4544

    Article  CAS  Google Scholar 

  33. Shen T, Hu C, Yang WL, Liu HC, Wei XL (2015) Mater Sci Semicond Process 34:114

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Sichuan Science and Technology Development Project (Grant No. 2021ZYD0027), the Original Scientific Research Instrument and Equipment Development Project of Southwest Jiaotong University (Grant No. XJ2021KJZK055), the Fundamental Research Funds for the Central Universities (Grant No. 2682020ZT102), and the 21th Key Laboratory Open Project of Southwest Jiaotong University (Grant No. ZD2022130093).

Author information

Authors and Affiliations

Authors

Contributions

Shi-Yuan Bao: conceptualization, data curation, formal analysis, investigation, methodology, writing — original draft.

Dan Hong: conceptualization, resources, supervision, writing — review and editing.

Yi-Chen Lu: formal analysis, methodology, writing — review and editing.

Qi-Jun Liu: investigation, methodology, writing — review and editing.

Zheng-Tang Liu: methodology, software, writing — review and editing.

Jian-Qiong Zhang: conceptualization, investigation, methodology, writing — review and editing.

Corresponding authors

Correspondence to Shi-Yuan Bao or Jian-Qiong Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 25.3 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, SY., Hong, D., Lu, YC. et al. First-principle calculations of the structural, vibrational, mechanical, electronic, and optical properties of ε-O8 under pressure. J Mol Model 28, 360 (2022). https://doi.org/10.1007/s00894-022-05352-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-022-05352-z

Keywords

Navigation