Skip to main content
Log in

First-principle calculations to investigate structural, electronic, optical, thermodynamic, and thermoelectric properties of ABO3 (A=Cs, Rb and B= Ta, Nb) compounds

  • Original Article
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

In this study, the structural, optoelectronic, thermodynamic, and thermoelectric properties of ABO3 (A=Cs, Rb and B= Ta, Nb) perovskite alloy are predicted. The full potential-linearized augmented plane wave (FP-LAPW) method is used within density functional theory (DFT). The calculated structural parameters of the title compounds are in excellent agreement with the available theoretical data. Moreover, the optical properties of the material in question are also examined and discussed. Based on the quasi-harmonic Debye model, the thermodynamic properties of the material in question have been predicted taking into account of the lattice vibrations. The change in the thermoelectric properties of the alloys of interest has been obtained using the BoltzTraP code. The electronic thermal conductivities (k/τ), Seebeck coefficients (S), power factors (PF), and electrical conductivities (σ/τ) have been calculated. The obtained calculation regarding the ZT merit factors is near 1 at room temperature, indicating that ABO3 (X=Cs, Rb and B= Ta, Nb) is a good candidate for thermoelectric applications at high and low temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

Similar content being viewed by others

References

  1. A. Soukiassian, W. Tian, V. Vaithyanathan, J.H. Haeni, L.Q. Chen, X.X. Xi, D.G. Schlom, D.A. Tenne, H.P. Sun, X.Q. Pan, K.J. Choi, C.B. Eom, Y.L. Li, Q.X. Jia, C. Constantin, R.M. Feenstra, M. Bernhagen, P. Reiche, R. Uecker, J. Mater. Res. 23, 1417 (2008)

    Article  CAS  Google Scholar 

  2. H.W. Jang, S.H. Baek, D. Ortiz, C.M. Folkman, C.B. Eom, Y.H. Chu, P. Shafer, R. Ramesh, V. Vaithyanathan, D.G. Schlom, Appl. Phys. Lett. 92, 062910 (2008)

    Article  Google Scholar 

  3. T. Wolfram, S. Ellialtioglu, Electronic and Optical Properties of d-Band Perovskites (Cambridge University Press, Cambridge, 2006), p. 280

    Book  Google Scholar 

  4. M. Wu, L. Fang, L. Liu, G. Li, B. Elouadi, Ferroelectrics 478(1), 18 (2015)

    Article  CAS  Google Scholar 

  5. P. Chen, N.J. Podraza, X.S. Xu, A. Melville, V.G. EVlahos, R. Ramesh, D.G. Schlom, J.L. Musfeldt, Appl. Phys. Lett. 96, 131907 (2010)

    Article  Google Scholar 

  6. W.-H. Kao, S.L. Haberichter, K.R. Bulloc, Electrochem. Soc 139, L105 (1992)

    Article  CAS  Google Scholar 

  7. H.-M. Christen, L.A. Boatner, J.D. Budai, M.F. Chisholm, L.A. Gea, D.P. Norton, C. Gerber, M.K. Urbani, Appl. Phys. Lett. 70(16), 7–214 (1997)

    Article  Google Scholar 

  8. A.H. Slavney, T. Hu, A.M. Lindenberg, H.I. Karunadasa, J. Am. Chem. Soc. 138(7), 2138 (2016)

    Article  CAS  Google Scholar 

  9. U.A. Joshi, J.S. Jang, P.H. Borse, J.S. Lee, Appl. Phys. Lett. 92, 242106 (2008)

    Article  Google Scholar 

  10. T. Kawada, M. Sase, M. Kudo, K. Yashiro, K. Sato, J. Mizusaki, N. Sakai, T. Horita, K. Yamaji, H. Yokokawa, Solid State Ionics 177, 3081 (2006)

    Article  CAS  Google Scholar 

  11. M. Feng, J.B. Goodenough, Eur. J. Solid State Inorg. Chem. 31(8-9), 663 (1994)

    CAS  Google Scholar 

  12. P. Ramasamy, D.-H. Lim, B. Kim, S.-H. Lee, M.-S. Lee, J.-S. Lee, Chem. Commun. 52, 2067 (2016)

    Article  CAS  Google Scholar 

  13. N.Q. Minh, J. Am. Ceram. Soc. 76, 563 (1993)

    Article  CAS  Google Scholar 

  14. H. Iwahara, T. Esaka, H. Uchida, N. Maeda, Solid State Ionics 3-4, 359 (1981)

    Article  CAS  Google Scholar 

  15. H. Uchida, N Maeda and H Iwahara. Solid State Ionics 11(2), 117 (1983)

    Article  CAS  Google Scholar 

  16. H. Iwahara, H. Uchida, K. Ono, K. Ogaki, J. Electrochem. Soc. 35(2), 529 (1988)

    Article  Google Scholar 

  17. T. Shaw, S. Trolier-McKinstry, P. McIntyre, Annu. Rev. Mater. Sci. 30, 263 (2000)

    Article  CAS  Google Scholar 

  18. M. Moret, M. Devillers, K. Worhoff, P. Larsen, J. Appl. Phys. 92(1), 468 (2002)

    Article  CAS  Google Scholar 

  19. F. Jona, G. Shirane, R. Pepinsky, Physiol. Rev. 97(6), 1584 (1955)

    Article  CAS  Google Scholar 

  20. D. Dimos, C. Mueller, Annu. Rev. Mater. Res. 28, 397 (1998)

    CAS  Google Scholar 

  21. M. Weber, M. Bass, G. Demars, J. Appl. Phys. 42(1), 301 (1971)

    Article  CAS  Google Scholar 

  22. K. Rao, K. Yoon, J. Mater. Sci. 38(3), 391 (2003)

    Article  CAS  Google Scholar 

  23. H. Kishi, Y. Mizuno, H. Chazono, Jpn. J. Appl. Phys. 42(1), 1 (2003)

    Article  CAS  Google Scholar 

  24. G.H. Jonker, Physica 22(8), 707 (1956)

    Article  CAS  Google Scholar 

  25. J. Deteresa, M. Ibarra, P. Algarabel, C. Ritter, C. Marquina, J. Blasco et al. Nature 386(6622), 256 (1997)

    Google Scholar 

  26. Y. Moritomo, A. Asamitsu, H. Kuwahara, Y.T. Giant, Nature. 380(6570), 141 (1996)

    Article  CAS  Google Scholar 

  27. C.B. Samantaray, H. Sim, H. Hwang, Phys. B Condens. Matter 351(1–2), 158 (2004)

    Article  CAS  Google Scholar 

  28. J.G. Bednorz, K.A. Müller, Phys. Rev. Lett. 52, 2289 (1984)

    Article  CAS  Google Scholar 

  29. U. Balachandran, B. Ma, P.S. Maiya, R.L. Mievillea, J.T. Duseka, J.J. Piccioloa, J. Guana, S.E. Dorrisa, M. Liub, Solid State Ionics 108, 363 (1998)

    Article  CAS  Google Scholar 

  30. H.P.R. Frederikse, W.R. Thurber, W.R. Hosler, Phys. Rev. 134, 442 (1964)

    Article  CAS  Google Scholar 

  31. J. Ihringer, J. Maichle, W. Prandl, A. Hewat, T. Wroblewski, Physica B-Condensed Matter. 82(2), 171 (1991)

    Article  CAS  Google Scholar 

  32. S. Berri, J. Magn. Magn. Mater. 385, 124 (2015)

    Article  CAS  Google Scholar 

  33. S. Berri, J. Sci. Adv. Mater. Dev. 4(2), 319 (2019)

    Google Scholar 

  34. S. Berri, J. Sci. Adv. Mater. Dev. 3(2), 254 (2018)

    Google Scholar 

  35. S. Berri, Acta Phys. Pol. A 138(6), 834 (2020)

    Article  CAS  Google Scholar 

  36. S. Berri, Pramana, J. Phys. 95, 38 (2021)

    CAS  Google Scholar 

  37. S. Berri, M. Attallah, N. Bouarissa, M. Ibrir, Phys. Status Solidi B 258(2), 2000402 (2021)

    Article  CAS  Google Scholar 

  38. H.J. Snaith, J.Phys. Chem. Lett. 4(21), 3623 (2013)

    Article  CAS  Google Scholar 

  39. C. Katan, N. Mercier, J. Even, Chem. Rev. 119, 3140 (2019)

    Article  CAS  Google Scholar 

  40. K. Yoshikawa, H. Kawasaki, W. Yoshida, T. Irie, K. Konishi, K. Nakano, T. Uto, D. Adachi, M. Kanematsu, H. Uzu, K. Yamamoto, Nat. Energy 2(5), 17032 (2017)

    Article  CAS  Google Scholar 

  41. J.J. Yoo, G. Seo, M.R. Chua, T.G. Park, Y. Lu, F. Rotermund, Y.-K. Kim, C.S. Moon, N.J. Jeon, J.-P. Correa-Baena, V. Bulović, S.S. Shin, M.G. Bawendi, J. Seo, Nature 590, 587 (2021)

    Article  CAS  Google Scholar 

  42. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 131, 6050 (2009)

    Article  CAS  Google Scholar 

  43. S. Guerin, B.E. Hayden, Chem. Commun. 55, 10047 (2019)

    Article  CAS  Google Scholar 

  44. L. Wang et al., Phys. Rev. Appl. 3, 064015 (2015)

    Article  Google Scholar 

  45. H. He, Z. Yang, Y. Xu, A.T. Smith, G. Yang, L. Sun, Nanoconvergence 7, 32 (2020)

    CAS  Google Scholar 

  46. B. Akgenc, A. Kinaci, C. Tagin, Mater. Chem. Phys. 205, 315 (2018)

    Article  CAS  Google Scholar 

  47. A. Lebedev, Phys. Solid State 51, 362 (2009)

    Article  CAS  Google Scholar 

  48. Y. Duan, G. Tang, C. Chen, T. Lu, Z. Wu, Phys. Rev. B 85, 054108 (2012)

    Article  Google Scholar 

  49. A. Erba, K.E. El-Kelany, M. Ferrero, I. Baraille, M. Rerat, Phys. Rev. B 88, 035102 (2013)

    Article  Google Scholar 

  50. J. F. Scott and C. A. P. de Araujo, Science 246, 1400 ( 1989 )

  51. F. Calle-Vallejo, J.I. Martinez, J.M. Garcia-Lastra, M. Mogensen, J. Rossmeisl, Angew. Chem. Int. Ed. 49, 1–4 (2010)

    Article  Google Scholar 

  52. P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, WIEN2K, an Augmented Plane Wave +Local orbitals program for calculating crystal properties (Karlheinz Schwarz, Technische Universität, Wien, 2001) ISBN 3-9501031-1-2

    Google Scholar 

  53. J.P. Perdew, S. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  CAS  Google Scholar 

  54. E. Engel, S.H. Vosko, Phys. Rev. B 47, 1316 (1993)

    Article  Google Scholar 

  55. F. Tran, P. Blaha, Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys. Rev. Lett. 102, 226401 (2009)

    Article  Google Scholar 

  56. G.K.H. Madesan, D.J. Sing, Comput. Phys. Commun. 175, 67 (2006)

    Article  Google Scholar 

  57. M.A. Blanco, E. Francisco, V. Luaňa, GIBBS: isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model Comput. Phys. Commun. 158, 7 (2004)

    Article  Google Scholar 

  58. S. Berri, J. Sci.: Adv. Materi. Devices 5(3), 378–384 (2020)

    Google Scholar 

  59. S. Berri, Eur. Phys. J. B 93, 191 (2020)

    Article  CAS  Google Scholar 

  60. S. Berri, N. Bouarissa, M. Oumertem, S. Chami, Comp. Condens. Matter. 19, e00365 (2019)

    Article  Google Scholar 

  61. A. Reshak, Spin-polarized Second Harmonic Generation from the Antiferromagnetic CaCoSO Single Crystal. Sci. Rep. 7, 46415 (2017). https://doi.org/10.1038/srep46415

    Article  CAS  Google Scholar 

  62. A.H. Reshak, Ab initio study of TaON, an active photocatalyst under visible light irradiation Phys. Chem.Chem.Phys. 16, 10558 (2014). https://doi.org/10.1039/C4CP00285G

    Article  CAS  Google Scholar 

  63. G.E. Davydyuk, O.Y. Khyzhun, A.H. Reshak, H. Kamarudin, G.L. Myronchuk, S.P. Danylchuk, A.O. Fedorchuk, L.V. Piskach, M.Y. Mozolyuk, O.V. Parasyuk, Photoelectrical properties and the electronic structure of Tl1−xIn1−xSnxSe2 (x = 0, 0.1, 0.2, 0.25) single crystalline alloys. Phys.Chem. Chem. Phys 15, 6965 (2013). https://doi.org/10.1039/C3CP50836F

    Article  CAS  Google Scholar 

  64. A.H. Reshak, Y.M. Kogut, A.O. Fedorchuk, O.V. Zamuruyeva, G.L. Myronchuk, O.V. Parasyuk, H. Kamarudin, S. Auluck, K.J. Plucinski, J. Bila, Linear, non-linear optical susceptibilities and the hyperpolarizability of the mixed crystals Ag0.5Pb1.75Ge(S1−xSex)4: experiment and theory. Phys.Chem. Chem. Phys. 15, 18979 (2013). https://doi.org/10.1039/C3CP53431F

    Article  CAS  Google Scholar 

  65. H. Ali, D. Reshak, S. Stys, I. Auluck, V. Kityk, Dispersion of linear and nonlinear optical susceptibilities and the hyperpolarizability of 3-methyl-4-phenyl-5-(2-pyridyl)-1,2,4-triazole. Phys. Chem. Chem. Phys. 13, 2945 (2011). https://doi.org/10.1039/C0CP01601B

    Article  Google Scholar 

  66. A.H. Reshak, Fe2MnSixGe1−x: influence thermoelectric properties of varying the germanium content. RSC Adv. 4, 39565 (2014). https://doi.org/10.1039/C4RA02669A

    Article  CAS  Google Scholar 

  67. A.H. Reshak, Thermoelectric properties for AA- and AB-stacking of a carbon nitride polymorph (C3N4). RSC Adv. 4, 63137 (2014). https://doi.org/10.1039/C4RA13342K

    Article  CAS  Google Scholar 

  68. F.D. Murnaghan, Proc. Natl. Acad. Sci. U. S. A. 30, 244 (1944)

    Article  CAS  Google Scholar 

  69. S. Berri, J. Supercond. Nov. Magn. 31, 1941–1947 (2018)

    Article  CAS  Google Scholar 

  70. S. Berri, J. Supercond. Nov. Magn. 29(5), 1309 (2016)

    Article  CAS  Google Scholar 

  71. K. Edalati, K. Fujiwara, S. Takechi, Q. Wang, M. Arita, M. Watanabe, X. Sauvage, T. Ishihara, Z. Horita, ACS Appl. Energy Mater. 3, 1710–1718 (2020)

    Article  CAS  Google Scholar 

  72. M.I. Hussain, R.M.A. Khalil, F. Hussain, et al., Probing the Structural, Electronic, Mechanical Strength and Optical properties of Tantalum-based oxide perovskites (A=Rb, Fr) for Optoelectronic Applications: First-Principles Investigations. J. Pre-Proof. Optik (2020). https://doi.org/10.1016/j.ijleo.2020.165027

  73. M. Sarwan, P. Shukla, S. Singh, S. Stability, Electronic and Elastic Properties of cubic Perovskite Oxide. AIP Conf. Proc. 2265, 030341 (2020). https://doi.org/10.1063/5.0017058

    Article  CAS  Google Scholar 

  74. A.I. Lebedev, Ferroelectr. Prop. Phys. Solid. State. 57(2), 331–336 (2015). https://doi.org/10.1134/S1063783415020237

    Article  CAS  Google Scholar 

  75. K. Yang et al., High-Throughput Design of Two-Dimensional Electron Gas Systems Based on Polar/Nonpolar Perovskite Oxide Heterostructures. Sci. Rep. 6, 34667 (2016). https://doi.org/10.1038/srep34667

    Article  CAS  Google Scholar 

  76. H. Park et al., J. Phys. Chem. C 122(16), 8814–8821 (2018)

    Article  CAS  Google Scholar 

  77. B. Sabir, G. Murtaza, R.M. Arif Khalil, Q. Mahmood, First principle study of electronic, mechanical, optical and thermoelectric properties of CsMO3 (M = Ta, Nb) compounds for optoelectronic devices. J. Mol. Graph. Model. 86, 19–26 (2019)

    Article  CAS  Google Scholar 

  78. I.E. Castelli, J.M. García-Lastra, F. Hüser, K.S. Thygesen, K.W. Jacobsen, Stability and bandgaps of layered perovskites for one- and two-photon water splitting. New J. Phys. 15, 105026 (2013)

    Article  Google Scholar 

  79. J.E. Saal, S. Kirklin, M. Aykol, B. Meredig, C. Wolverton, Materials design and discovery with high-throughput density functional theory: the open quantum materials database (OQMD). JOM 65(11), 1501–1509 (2013)

    Article  CAS  Google Scholar 

  80. I.E. Castelli, K.W. Jacobsen, K.S. Thygesen, Computational Screening of Materials for Water Splitting Applications. Kgs (Technical University of Denmark (DTU), Lyngby, 2013)

    Google Scholar 

  81. S. Adachi, Properties of Semiconductor Alloys: Group-IV, III-V and II-VI Semiconductors (Wiley, Chichester, 2009)

    Book  Google Scholar 

  82. I. Vurgaftman, J.R. Meyer, L.R. Ram-Mohan, Band parameters for III–V compound semiconductors and their alloys. J. Appl. Phys. 89, 5815 (2001)

    Article  CAS  Google Scholar 

  83. F. Cheng, T. Liu, Q. Zhang, H. Qiao, X. Zhou, Angular dependence of Ag LX-rays emission induced by 20–40 keV electron-impact. Nucl. Instrum. Methods Phys. Res., Sect. B 268(15), 2403 (2010)

    Article  CAS  Google Scholar 

  84. R. Turchetta, in In: In High Performance Silicon Imaging: Fundamentals and Applications of CMOS and CCD Image Sensors, ed. by D. Durini. Complementary metal-oxide-semiconductor (CMOS) sensors for high-performance scientific imaging (Woodhead, Cambridge, 2014), p. 281

    Google Scholar 

  85. C. Klingshirn, H. Haug, Optical properties of highly excited direct gap semiconductors. Phys. Rep. 70(5), 315 (1981)

    Article  CAS  Google Scholar 

  86. B. Hönerlage, R. Lévy, J.B. Grun, C. Klingshirn, K. Bohnert, Phys. Rep. 124(3), 161 (1985)

    Article  Google Scholar 

  87. H. Kalt, C.F. Klingshirn, in Linear Optical Properties of Semiconductors, 5th edn.. Semiconductor Optics 1 (Springer, Verlag, 2019)

    Chapter  Google Scholar 

  88. S. Adachi, Properties of Group-IV, III-V, and II-VI Semiconductors (Wiley, Chichester, 2005)

    Book  Google Scholar 

  89. S. Zhao, H.P.T. Nguyen, G. Kibria, M.I. Zetian, III-Nitride nanowire optoelectronics. Prog. Quant. Electron. 44, 14 (2015)

    Article  CAS  Google Scholar 

  90. G. Kang, J. Yoo, J. Ahn, K. Kim, Nanotoday 10(1), 22 (2015)

    Article  CAS  Google Scholar 

  91. B. Zalba, J.M. Marin, L.F. Cabeza, H. Mehling, Appl. Therm. Eng. 23(3), 251 (2003). https://doi.org/10.1016/S1359-4311(02)00192-8

    Article  CAS  Google Scholar 

  92. V. Shrotriya, Y. Yang, J. Appl. Phys. 97, 054504 (2005). https://doi.org/10.1063/1.1857053

    Article  CAS  Google Scholar 

  93. E.M. Levin, Phys. Rev. B 93, 045209 (2016)

    Article  Google Scholar 

  94. S. Berri, J. Supercond. Nov. Magn. 33, 3809 (2020)

    Article  CAS  Google Scholar 

  95. K. Banaras, H.A. Rahnamaye Aliabad, N. Razghandi, M. Maqbool, S.J. Asadabadi, I. Ahmad, Comput. Phys. Commun. 187, 1–7 (2015)

    Article  Google Scholar 

  96. Z. Ali, I. Khan, I. Ahmad, M.S. Khan, S.J. Asadabadi, Mater. Chem. Phys. 162, 308–315 (2015)

    Article  CAS  Google Scholar 

  97. B.B. Rasul, M.A. Iqbal, S.M. Alay-e-Abbas, M. Sajjad, M. Yaseen, M. ImranArshad, G. Murtaza, Mater. Sci. Semicond. Process. 41, 297–303 (2016)

    Article  Google Scholar 

  98. N.A. Noor, M. Rashid, S.M. Alay e Abbas, M. Raza, A. Mahmood, S.M. Ramay, G. Murtaza, Mater. Sci. Semicond. Process. 49, 40–47 (2016)

    Article  CAS  Google Scholar 

  99. B. Sabir, G. Murtaza, Q. Mahmood, R. Ahmad, K.C. Bhamu, Curr. Appl. Phys. 17(11), 1539–1546 (2017)

    Article  Google Scholar 

  100. H.A. Rahnamaye Aliabad, Z. Barzanuni, S. Ramezani Sani, B.G. Yalcin, I. Ahmad, S. Jalali-Asadabadi, H. Vaezi, M. Dastras, J. Alloys Compd. 690, 942–952 (2017)

    Article  CAS  Google Scholar 

  101. J. Smit, H.J. Wijin, Ferrites (Cleaver-Home Press, London, 1959), p. 239

    Google Scholar 

  102. A.T. Hanbicki, M. Currie, G. Kioseoglou, A.L. Friedman, B.T. Jonker, Solid State Commun. 203, 16 (2015)

    Article  CAS  Google Scholar 

  103. W. Wei, Z.Y. Wang, L.L. Wang, H.J. Liu, R. Xiong, J. Shi, H. Li, X.F. Tang, J. Phys. D. Appl. Phys. 42, 115403 (2009)

    Article  Google Scholar 

  104. M. Yaseen, H. Shafiq, J. Iqbal, Misbah, F. Batool, A. Murtaza, M. Iqbal, H. Althib, S.M. Ramay, A. Mahmood, Phys. B Condens. Matter 612, 412626 (2021)

    Article  CAS  Google Scholar 

  105. Q. Mahmood, M. Yaseen, B.U. Haq, A. Laref, A. Nazir, Chem. Phys. 524, 106 (2019)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saadi Berri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berri, S., Bouarissa, N. First-principle calculations to investigate structural, electronic, optical, thermodynamic, and thermoelectric properties of ABO3 (A=Cs, Rb and B= Ta, Nb) compounds. emergent mater. 5, 1831–1847 (2022). https://doi.org/10.1007/s42247-021-00324-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-021-00324-0

Navigation