Skip to main content
Log in

Active control of near-field radiative heat transfer via multiple coupling of surface waves with graphene plasmon

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

It is known that the surface plasmons (SPs) supported by graphene can be strongly coupled with electric SPs supported by the metamaterial and with symmetric and antisymmetric surface phonon polaritons (SPhPs) supported by silicon carbide (SiC). It has been shown that coated SiC thin films can efficiently enhance near-field radiative heat transfer between metamaterials. In this study, we theoretically investigate near-field heat transfer between graphene–SiC–graphene–metamaterial (GSGM) multilayer structures. The heat transfer between GSGM structures is significantly larger than that between SiC-coated metamaterials when the chemical potential of graphene is not very high. Moreover, the structure proposed in this study behaves much better than the previous SiC/graphene/metamaterial in enhancing the near-field radiative heat transfer. The findings in this study provide a basis for active controlling of near-field radiative heat transfer.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Polder, M. Van Hove, Phys. Rev. B 4, 3303 (1971)

    Article  ADS  Google Scholar 

  2. N. Arvind, G. Chen, Appl. Phys. Lett. 82, 3544 (2003)

    Article  ADS  Google Scholar 

  3. K. Park, S. Basu, W.P. King, Z.M. Zhang, J. Quant. Spectr. Radiat. Transf. 109, 305 (2008)

    Article  ADS  Google Scholar 

  4. M. Riccardo, B.A. Philippe, Sci. Rep. 3, 1383 (2013)

    Article  Google Scholar 

  5. B. Guha, C. Otey, C.B. Poitras, S. Fan, M. Lipson, Nano Lett. 12, 4546 (2012)

    Article  ADS  Google Scholar 

  6. P. Ben-Abdallah, S.A. Biehs, Phys. Rev. Lett. 112, 044301 (2014)

    Article  ADS  Google Scholar 

  7. W. Muller Hirsch, A. Kraft, M.T. Hirsch, J. Parisi, A. Kittel, J. Vac. Sci. Technol. A 17, 1205 (1999)

    Article  ADS  Google Scholar 

  8. A. Kittel, W. Müller Hirsch, J. Parisi, D. Reddig, M. Holthaus, Phys. Rev. Lett. 95, 224301 (2005)

    Article  ADS  Google Scholar 

  9. A. Kittel, U.F. Wischnath, J. Welker, Appl. Phys. Lett. 93, 193109 (2008)

    Article  ADS  Google Scholar 

  10. A.C. Jones, B.T. O’Callahan, H.U. Yang, M.B. Raschke, Prog. Surf. Sci. 88, 349 (2013)

    Article  ADS  Google Scholar 

  11. J.C. Cuevas, F.J. García-Vidal, ACS Photonics 5, 3896 (2018)

    Article  Google Scholar 

  12. A.I. Volokitin, B.N.J. Persson, Rev. Mod. Phys. 79, 1291 (2007)

    Article  ADS  Google Scholar 

  13. S.A. Biehs, M. Tschikin, Phys. Rev. Lett. 109, 104301 (2012)

    Article  ADS  Google Scholar 

  14. K. Joulain, J. Drevillon, Phys. Rev. B 81, 165199 (2010)

    Article  ADS  Google Scholar 

  15. A.I. Volokitin, B.N.J. Persson, Phys. Rev. B 83, 241407(R) (2011)

    Article  ADS  Google Scholar 

  16. S.A. Biehs, M. Tschikin, R. Messina, P. Ben-Abdallah, Appl. Phys. Lett. 102, 131106 (2013)

    Article  ADS  Google Scholar 

  17. V.B. Svetovoy, P.J.V. Zwol, J. Chevrier, Phys. Rev. B 85, 155418 (2012)

    Article  ADS  Google Scholar 

  18. S. Basu, Y. Yang, L. Wang, Appl. Phys. Lett. 106, 033106 (2015)

    Article  ADS  Google Scholar 

  19. A.I. Volokitin, B.N.J. Persson, Phys. Rev. B 63, 205404 (2001)

    Article  ADS  Google Scholar 

  20. H. Iizuka, S. Fan, Phys. Rev. Lett. 120, 063901 (2018)

    Article  ADS  Google Scholar 

  21. Y. Zhang, H.-L. Yi, H.-P. Tan, ACS Photonics 5, 3739 (2018)

    Article  Google Scholar 

  22. K. Shi, R. Liao, G. Cao, F. Bao, S. He, Opt. Express 26, A591 (2018)

    Article  ADS  Google Scholar 

  23. T. Kralik, P. Hanzelka, V. Musilova, A. Srnka, M. Zobac, Rev. Sci. Instrum. 82, 055106 (2011)

    Article  ADS  Google Scholar 

  24. R. St-Gelais, B. Guha, L. Zhu, S. Fan, M. Lipson, Nano Lett. 14, 6971 (2014)

    Article  ADS  Google Scholar 

  25. R.S. Ottens, V. Quetschke, S. Wise, A.A. Alemi, R. Lundock, G. Mueller, D.H. Reitze, D.B. Tanner, B.F. Whiting, Phys. Rev. Lett. 107, 014301 (2011)

    Article  ADS  Google Scholar 

  26. D.R. Smith, D. Schurig, Phys. Rev. Lett. 90, 077405 (2003)

    Article  ADS  Google Scholar 

  27. I.S. Nefedov, C.R. Simovski, Phys. Rev. B 84, 195459 (2011)

    Article  ADS  Google Scholar 

  28. Y. Guo, L.C. Cortes, S. Molesky, Z. Jacob, Appl. Phys. Lett. 101, 131106 (2012)

    Article  ADS  Google Scholar 

  29. L.A. Falkovsky, S.S. Pershoguba, Phys. Rev. B 76, 153410 (2007)

    Article  ADS  Google Scholar 

  30. T. Stauber, N.M.R. Peres, A.K. Geim, Phys. Rev. B 78, 085432 (2008)

    Article  ADS  Google Scholar 

  31. L.A. Falkovsky, J. Phys. Conf. Ser. 129, 012004 (2008)

    Article  Google Scholar 

  32. P. Avouris, Nano Lett. 10, 4285 (2010)

    Article  ADS  Google Scholar 

  33. B.N.J. Persson, H. Ueba, J. Phys.: Condens. Matter 22, 462201 (2010)

    ADS  Google Scholar 

  34. O. Ilic, M. Jablan, D. Joannopoulos, I. Celanovic, H. Buljan, M. Soljačić, Phys. Rev. B 85, 155422 (2012)

    Article  ADS  Google Scholar 

  35. P. Ben-Abdallah, A. Belarouci, L. Frechette, S.A. Biehs, Appl. Phys. Lett. 107, 053109 (2015)

    Article  ADS  Google Scholar 

  36. Q. Zhao, T. Zhou, T. Wang, W. Liu, J. Liu, T. Yu, Q. Liao, N. Liu, J. Phys. D: Appl. Phys. 50, 145101 (2017)

    Article  ADS  Google Scholar 

  37. T. Zhou, C.-C. Song, T.-B. Wang, W.-X. Liu, J.-T. Liu, T.-B. Yu, Q.-H. Liao, N.-H. Liu, AIP Adv. 7, 055213 (2017)

    Article  ADS  Google Scholar 

  38. J. Pendry, A. Holden, D. Robbins, W. Stewart, IEEE Trans. Microw. Theory Tech. 47, 2075 (1999)

    Article  ADS  Google Scholar 

  39. E. Palik, Handbook of Optical Constants of Solids (Academic Press, New York, 1998)

  40. S.A. Biehs, Eur. Phys. J. B 58, 423 (2007)

    Article  ADS  Google Scholar 

  41. M. Lim, S.S. Lee, B.J. Lee, Opt. Express 21, 22173 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Fan Liao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, YF., Wang, GY. Active control of near-field radiative heat transfer via multiple coupling of surface waves with graphene plasmon. Eur. Phys. J. B 92, 65 (2019). https://doi.org/10.1140/epjb/e2019-90627-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2019-90627-7

Keywords

Navigation