Skip to main content
Log in

Phase diagram of the alternating-spin Heisenberg chain with extra isotropic three-body exchange interactions

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

For the time being isotropic three-body exchange interactions are scarcely explored and mostly used as a tool for constructing various exactly solvable one-dimensional models, although, generally speaking, such competing terms in generic Heisenberg spin systems can be expected to support specific quantum effects and phases. The Heisenberg chain constructed from alternating S = 1 and σ = 1/2 site spins defines a realistic prototype model admitting extra three-body exchange terms. Based on numerical density-matrix renormalization group (DMRG) and exact diagonalization (ED) calculations, we demonstrate that the additional isotropic three-body terms stabilize a variety of partially-polarized states as well as two specific non-magnetic states including a critical spin-liquid phase controlled by two Gaussinal conformal theories as well as a critical nematic-like phase characterized by dominant quadrupolar S-spin fluctuations. Most of the established effects are related to some specific features of the three-body interaction such as the promotion of local collinear spin configurations and the enhanced tendency towards nearest-neighbor clustering of the spins. It may be expected that most of the predicted effects of the isotropic three-body interaction persist in higher space dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Introduction to Frustrated Magnetism: Materials, Experiments, Theory, edited by C. Lacroix, P. Mendels, F. Mila (Springer Series in Solid State Sciences, 2011), Vol. 164

  2. A. Läuchli, G. Schmid, S. Trebst, Phys. Rev. B 74, 144426 (2006), and references therein

    Article  ADS  Google Scholar 

  3. K. Harada, N. Kawashima, Phys. Rev. B 65, 052403 (2002)

    Article  ADS  Google Scholar 

  4. T.A. Tóth, A.M. Läuchli, F. Mila, K. Penc, Phys. Rev. B 85, 140403(R) (2012)

    Article  ADS  Google Scholar 

  5. T. Momoi, P. Sindzingre, N. Shannon, Phys. Rev. Lett. 97, 257204 (2006)

    Article  ADS  Google Scholar 

  6. A. Smerald, N. Shannon, Phys. Rev. B 88, 184430 (2013)

    Article  ADS  Google Scholar 

  7. U. Falk, A. Furrer, H.U. Güdel, J.K. Kjems, Phys. Rev. Lett. 56, 1956 (1986)

    Article  ADS  Google Scholar 

  8. U. Falk, A. Furrer, J.K. Kjems, H.U. Güdel, Phys. Rev. Lett. 52, 1336 (1984)

    Article  ADS  Google Scholar 

  9. T. Iwashita, N. Uryû, J. Phys. Soc. Jpn 36, 48 (1974)

    Article  ADS  Google Scholar 

  10. A. Furrer, Int. J. Mod. Phys. B 24, 3653 (2010)

    Article  MATH  ADS  Google Scholar 

  11. A. Furrer, O. Waldmann, Rev. Mod. Phys. 85, 367 (2013)

    Article  ADS  Google Scholar 

  12. F. Michaud, F. Vernay, S.R. Manmana, F. Mila, Phys. Rev. Lett. 108, 127202 (2012)

    Article  ADS  Google Scholar 

  13. J.K. Pachos, M.B. Plenio, Phys. Rev. Lett. 93, 056402 (2004)

    Article  ADS  Google Scholar 

  14. H.P. Büchler, A. Micheli, P. Zoller, Nat. Phys. 3, 726 (2007)

    Article  Google Scholar 

  15. N. Andrei, H. Johannesson, Phys. Lett. A 100, 108 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  16. H.J. de Vega, F. Woynarovich, J. Phys. A 25, 4499 (1992)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  17. S.R. Aladim, M.J. Martins, J. Phys. A 26, L529 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  18. H.J. de Vega, L. Mezincescu, R.I. Nepomechie, Phys. Rev. B 49, 13223 (1994)

    Article  ADS  Google Scholar 

  19. A. Bytsko, A. Doikou, J. Phys. A 37, 4465 (2004)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  20. G.A.P. Ribeiro, A. Klümper, Nucl. Phys. B 801, 247 (2008)

    Article  MATH  ADS  Google Scholar 

  21. F. Michaud, S.R. Manmana, F. Mila, Phys. Rev. B 87, 140404(R) (2013)

    Article  ADS  Google Scholar 

  22. F. Michaud, F. Mila, Phys. Rev. B 88, 094435 (2013)

    Article  ADS  Google Scholar 

  23. Z.-Y. Wang, S.C. Furuya, M. Nakamura, R. Komakura, Phys. Rev. B 88, 224419 (2013)

    Article  ADS  Google Scholar 

  24. R. Thomale, S. Rachel, P. Schmitteckert, M. Greiter, Phys. Rev. B 85, 195149 (2012)

    Article  ADS  Google Scholar 

  25. Ch.P. Landee, M.M. Turnbull, Eur. J. Inorg. Chem. 2013, 2266 (2013)

    Article  Google Scholar 

  26. N.B. Ivanov, J. Richter, J. Schulenburg, Phys. Rev. B 79, 104412 (2009)

    Article  ADS  Google Scholar 

  27. N.B. Ivanov, Condensed Matter Phys. 12, 435 (2009)

    Article  Google Scholar 

  28. I. Affleck, E.H. Lieb, J. Math. Phys. 12, 57 (1986)

    MathSciNet  ADS  Google Scholar 

  29. N.B. Ivanov, J. Richter, Phys. Rev. B 69, 214420 (2004)

    Article  ADS  Google Scholar 

  30. T. Shimokawa, H. Nakano, J. Kor. Phys. Soc. (SI) 63, 591 (2013)

    Article  ADS  Google Scholar 

  31. Sh.S. Furuya, Th. Giamarchi, Phys. Rev. B 89, 205131 (2014)

    Article  ADS  Google Scholar 

  32. C. Holzhey, F. Larsen, F. Wilczek, Nucl. Phys. B 424, 443 (1994)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  33. P. Calabrese, J. Cardy, J. Stat. Mech. 06, P06002 (2004)

    Google Scholar 

  34. F.C. Alcaraz, M.I. Berganza, G. Sierra, Phys. Rev. Lett. 106, 201601 (2011)

    Article  ADS  Google Scholar 

  35. M. Oshikawa, M. Yamanaka, I. Affleck, Phys. Rev. Lett. 78, 1984 (1997)

    Article  ADS  Google Scholar 

  36. H.W.J. Blöte, J.L. Cardy, M.P. Nightingale, Phys. Rev. Lett. 56, 742 (1986)

    Article  ADS  Google Scholar 

  37. I. Affleck, Phys. Rev. Lett. 56, 746 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  38. J. Cardy, J. Phys. A 17, L385 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  39. F.C. Alcaraz, M.N. Barber, M.T. Batchelor, R.J. Baxter, G.R.W. Quispel, J. Phys. A 20, 6397 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  40. K. Hallberg, X.Q.G. Wang, P. Horsch, A. Moreo, Phys. Rev. Lett. 76, 4955 (1996), and references therein

    Article  ADS  Google Scholar 

  41. N. Laflorencie, E.S. Sørensen, M.-S. Chang, I. Affleck, Phys. Rev. Lett. 96, 100603 (2006)

    Article  ADS  Google Scholar 

  42. A Läuchli, J.C. Domenge, C. Lhuillier, P. Sindzingre, M. Troyer, Phys. Rev. Lett. 95, 137206 (2005), and references therein

    Article  ADS  Google Scholar 

  43. P.W. Anderson, Phys. Rev. B 86, 694 (1952)

    Article  MATH  ADS  Google Scholar 

  44. J. Schnack, M. Luban, Phys. Rev. B 63, 014418 (2000)

    Article  ADS  Google Scholar 

  45. A. Machens, N.P. Konstantinidis, O. Waldmann, I. Schneider, S. Eggert, Phys. Rev. B 87, 144409 (2013)

    Article  ADS  Google Scholar 

  46. J. Schnack, M. Luban, R. Modler, Europhys. Lett. 56, 863 (2001)

    Article  ADS  Google Scholar 

  47. S. Eggert, I. Affleck, Phys. Rev. B 46, 10866 (1992)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Schnack.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanov, N., Ummethum, J. & Schnack, J. Phase diagram of the alternating-spin Heisenberg chain with extra isotropic three-body exchange interactions. Eur. Phys. J. B 87, 226 (2014). https://doi.org/10.1140/epjb/e2014-50423-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2014-50423-7

Keywords

Navigation