Skip to main content
Log in

Signatures of an \(\alpha \) + core structure in \(^{44}\)Ti + \(^{44}\)Ti collisions at \(\sqrt{s_{NN}}=5.02\) TeV by a multiphase transport model

  • Regular Article –Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

It is important to understand whether \(\alpha \)-clustering structures can leave traces in ultra-relativistic heavy ion collisions. Using the modified AMPT model, we simulate three \(\alpha \) + core configurations of \(^{44}\)Ti in \(^{44}\)Ti\( +^{44}\)Ti collisions at \(\sqrt{s_{NN}}=5.02\) TeV as well as other systems with Woods-Saxon structures. One of these configurations has no additional constraint, but the other two have the Mott density edge \(r_{\textrm{Mott}}\) set as either a lower or upper bound on the cluster position \(r_{\alpha }\) to check the influence of \(\alpha \) dissolution. This is the first time that the initial stage of the geometric properties in heavy-ion collisions has been configured using the traditional treatment of the nuclear structure. We compare the radial nucleon density, multiplicity distribution, transverse momentum spectra, eccentricity, triangularity, elliptic flow and triangular flow of these six systems. \(\alpha +\) core structures can alter all these observations especially in the most-central collisions, among which elliptic flow is the most hopeful as a probe of such structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: xxx.].

References

  1. A. Andronic, P. Braun-Munzinger, K. Redlich, J. Stachel, Decoding the phase structure of QCD via particle production at high energy. Nature 561, 321 (2018). https://doi.org/10.1038/s41586-018-0491-6

    Article  ADS  Google Scholar 

  2. E. Shuryak, Quark-gluon plasma and hadronic production of leptons, photons and psions. Phys. Lett. B 78, 150 (1978). https://doi.org/10.1016/0370-2693(78)90370-2

    Article  ADS  Google Scholar 

  3. D. Boyanovsky, H. de Vega, D. Schwarz, Phase transitions in the early and present universe. Annu. Rev. Nucl. Part. Sci. 56, 441 (2006). https://doi.org/10.1146/annurev.nucl.56.080805.140539

    Article  ADS  Google Scholar 

  4. L. Evans, P. Bryant, LHC machine. J. Instrum. 3(08), S08001 (2008). https://doi.org/10.1088/1748-0221/3/08/S08001

    Article  Google Scholar 

  5. S. Acharya, ALICE Collaboration et al., Multiplicity dependence of \(\pi \), K, and p production in pp collisions at \(\sqrt{s} = 13\) TeV. Eur. Phys. J. C 80, 693 (2020). https://doi.org/10.1140/epjc/s10052-020-8125-1

  6. B. Abelev, ALICE Collaboration et al., Multiplicity dependence of pion, kaon, proton and lambda production in p-Pb collisions at \(\sqrt{s_{NN}}\)=5.02 TeV. Phys. Lett. B 728, 25 (2014). https://doi.org/10.1016/j.physletb.2013.11.020

  7. M. Harrison, T. Ludlam, S. Ozaki, RHIC project overview. Nucl. Instrum. Methods Phys. Res. Sect. A 499, 235 (2003). https://doi.org/10.1016/S0168-9002(02)01937-X

    Article  ADS  Google Scholar 

  8. K. Adcox, PHENIX Collaboration et al., Centrality dependence of charged particle multiplicity in Au–Au collisions at \(\sqrt{{s}_{\rm NN}=130 \rm GeV}\). Phys. Rev. Lett. 86, 3500 (2001). https://doi.org/10.1103/PhysRevLett.86.3500

  9. B.B. Back, PHOBOS Collaboration et al., Energy dependence of particle multiplicities in central \(Au+Au\) collisions. Phys. Rev. Lett. 88, 022302 (2001). https://doi.org/10.1103/PhysRevLett.88.022302

  10. A. Bzdak, S. Esumi, V. Koch, J.F. Liao, M. Stephanov, N. Xu, Mapping the phases of quantum chromodynamics with beam energy scan. Phys. Rep. 853, 1 (2020). https://doi.org/10.1016/j.physrep.2020.01.005

    Article  ADS  Google Scholar 

  11. E. Laermann, O. Philipsen, Lattice QCD at finite temperature. Ann. Rev. Part. Nucl. Sci. 53, 163 (2023). https://doi.org/10.1146/annurev.nucl.53.041002.110609

    Article  ADS  Google Scholar 

  12. G. Qin, 3D wakes on the femtometer scale by supersonic jets. Nucl. Sci. Tech. 34, 22 (2023). https://doi.org/10.1007/s41365-023-01182-7

    Article  Google Scholar 

  13. K. Sun, L. Chen, C.M. Ko, F. Li, J. Xu, X. Zhangbu, Light nuclei production and QCD phase transition in heavy-ion collisions. Nucl. Tech. 46, 040012 (2023). https://doi.org/10.11889/j.0253-3219.2023.hjs.46.040012. (in Chinese)

    Article  Google Scholar 

  14. Q. Chen, G.-L. Ma, J.-H. Chen, Transport model study of conserved charge fluctuations and QCD phase transition in heavy-ion collisions. Nucl. Tech. 46, 040013 (2023). https://doi.org/10.11889/j.0253-3219.2023.hjs.46.040013. (in Chinese)

    Article  Google Scholar 

  15. S.S. Adler, PHENIX Collaboration et al., Identified charged particle spectra and yields in \(\text{Au}+\text{ Au }\) collisions at \(\sqrt{{\rm s_{\rm N}\rm N }}=200\text{ GeV }\). Phys. Rev. C 69, 034909 (2004). https://doi.org/10.1103/PhysRevC.69.034909

  16. H.G. Ritter, R. Stock, Collective flow of QCD matter: a historical introduction. J. Phys. G Nucl. Part. Phys. 41, 124002 (2014). https://doi.org/10.1088/0954-3899/41/12/124002

    Article  ADS  Google Scholar 

  17. G. Giacalone, Observing the deformation of nuclei with relativistic nuclear collisions. Phys. Rev. Lett. 124, 202301 (2020). https://doi.org/10.1103/PhysRevLett.124.202301

    Article  ADS  Google Scholar 

  18. G. Giacalone, Constraining the quadrupole deformation of atomic nuclei with relativistic nuclear collisions. Phys. Rev. C 102, 024901 (2020). https://doi.org/10.1103/PhysRevC.102.024901

    Article  ADS  Google Scholar 

  19. J. Jia, G. Giacalone, C. Zhang, Separating the impact of nuclear skin and nuclear deformation in high-energy isobar collisions. Phys. Rev. Lett. 131, 022301 (2023). https://doi.org/10.1103/PhysRevLett.131.022301

    Article  ADS  Google Scholar 

  20. J. Jia, Probing triaxial deformation of atomic nuclei in high-energy heavy ion collisions. Phys. Rev. C 105, 044905 (2022). https://doi.org/10.1103/PhysRevC.105.044905

    Article  ADS  Google Scholar 

  21. H. Li, H.-J. Xu, Y. Zhou, X. Wang, J. Zhao, L.-W. Chen, F. Wang, Probing the neutron skin with ultrarelativistic isobaric collisions. Phys. Rev. Lett. 125, 222301 (2020). https://doi.org/10.1103/PhysRevLett.125.222301

    Article  ADS  Google Scholar 

  22. F. Li, Y.-G. Ma, S. Zhang, G.-L. Ma, Q. Shou, Impact of nuclear structure on the background in the chiral magnetic effect in \(_{44}^{96}\) Ru \(+_{44}^{96}\) Ru and \(_{40}^{96}\) Zr \(+_{40}^{96}\) Zr collisions at \(\sqrt{{s}_{NN}}=7.7-200\) GeV from a multiphase transport model. Phys. Rev. C 106, 014906 (2022). https://doi.org/10.1103/PhysRevC.106.014906

    Article  ADS  Google Scholar 

  23. X.-L. Zhao, G.-L. Ma, Search for the chiral magnetic effect in collisions between two isobars with deformed and neutron-rich nuclear structures. Phys. Rev. C 106, 034909 (2022). https://doi.org/10.1103/PhysRevC.106.034909

    Article  ADS  Google Scholar 

  24. Y.-G. Ma, S. Zhang, Influence of nuclear structure in relativistic heavy-ion collisions, in Handbook of Nuclear Physics. ed. by I. Tanihata, H. Toki, T. Kajino (Springer Nature Singapore, Singapore, 2020), pp.1–30

    Google Scholar 

  25. B. Bally, et al., Imaging the initial condition of heavy-ion collisions and nuclear structure across the nuclide chart (2022). arXiv:2209.11042 [nucl-ex]

  26. G. Gamow, Constitution of Atomic Nuclei and Radioactivity (Clarendon Press, UK, 1931)

    Google Scholar 

  27. D. Brink et al., Investigation of the alpha-particle model for light nuclei. Phys. Lett. B 33, 143 (1970). https://doi.org/10.1016/0370-2693(70)90284-4

    Article  ADS  Google Scholar 

  28. A. Tohsaki, H. Horiuchi, P. Schuck, G. Röpke, Alpha cluster condensation in \(^{12}{{\rm C}}\) and \(^{16}{{\rm O}}\). Phys. Rev. Lett. 87, 192501 (2001). https://doi.org/10.1103/PhysRevLett.87.192501

    Article  ADS  Google Scholar 

  29. B. Zhou, Y. Funaki, H. Horiuchi, Y.-G. Ma, G. Röpke, P. Schuck, A. Tohsaki, T. Yamada, The 5\(\alpha \) condensate state in \(^{20}\)Ne. Nat. Commun. 14, 8206 (2023). https://doi.org/10.1038/s41467-023-43816-9

    Article  ADS  Google Scholar 

  30. D. Bai, Z. Ren, G. Röpke, \(\alpha \) clustering from the quartet model. Phys. Rev. C 99, 034305 (2019). https://doi.org/10.1103/PhysRevC.99.034305

    Article  ADS  Google Scholar 

  31. H.C. Manjunatha, N. Sowmya, P.S.D. Gupta, K.N. Sridhar, A.M. Nagaraja, L. Seenappa, S.A.C. Raj, Investigation of decay modes of super heavy nuclei. Nucl. Sci. Tech. 32, 130 (2021). https://doi.org/10.1007/s41365-021-00967-y

    Article  Google Scholar 

  32. B. Buck, A.C. Merchant, S.M. Perez, Systematics of alpha-cluster states above double shell closures. Phys. Rev. C 51, 559 (1995). https://doi.org/10.1103/PhysRevC.51.559

    Article  ADS  Google Scholar 

  33. N. Itagaki, M. Ito, M. Milin, T. Hashimoto, H. Ishiyama, H. Miyatake, Coexistence of \(\alpha +\alpha +n+n\) and \(\alpha +t+t\) cluster structures in \(^{10}{{\rm Be}}\). Phys. Rev. C 77, 067301 (2008). https://doi.org/10.1103/PhysRevC.77.067301

    Article  ADS  Google Scholar 

  34. C.J. Halcrow, C. King, N.S. Manton, Dynamical \(\alpha \)-cluster model of \(^{16}{{\rm O}} \). Phys. Rev. C 95, 031303 (2017). https://doi.org/10.1103/PhysRevC.95.031303

    Article  ADS  Google Scholar 

  35. L. Zhou, S.-M. Wang, D.-Q. Fang, Y.-G. Ma, Recent progress in two-proton radioactivity. Nucl. Sci. Tech. 33, 105 (2022). https://doi.org/10.1007/s41365-022-01091-1

    Article  Google Scholar 

  36. M.A. Souza, H. Miyake, \(\alpha \) + core structure described with an additional interaction in the nuclear matter saturation region. Eur. Phys. J. A 59, 74 (2023). https://doi.org/10.1140/epja/s10050-023-00990-0

    Article  ADS  Google Scholar 

  37. L. Qin, K. Hagel, R. Wada et al., Laboratory tests of low density astrophysical nuclear equations of state. Phys. Rev. Lett. 108, 172701 (2012). https://doi.org/10.1103/PhysRevLett.108.172701

    Article  ADS  Google Scholar 

  38. W.B. He, Y.G. Ma, X.G. Cao, X.Z. Cai, G.Q. Zhang, Giant dipole resonance as a fingerprint of \(\alpha \) clustering configurations in \(^{12}\)C and \(^{16}\)O. Phys. Rev. Lett. 113, 032506 (2014). https://doi.org/10.1103/PhysRevLett.113.032506

    Article  ADS  Google Scholar 

  39. W.-B. He, Q.-F. Li, Y.-G. Ma, Z.-M. Niu, J.-C. Pei, Y.-X. Zhang, Machine learning in nuclear physics at low and intermediate energies,. Sci. China Phys. Mech. Astron. 66, 282001 (2023). https://doi.org/10.1007/s11433-023-2116-0

    Article  ADS  Google Scholar 

  40. W.B. He, Y.G. Ma, L.G. Pang, H.C. Song, K. Zhou, Machine learning in nuclear physics at low and intermediate energies. Nucl. Sci. Tech. 34, 88 (2023). https://doi.org/10.1007/s41365-023-01233-z

    Article  Google Scholar 

  41. P. Bożek, W. Broniowski, E.R. Arriola, M. Rybczyński, \(\mathbf{\alpha } \) clusters and collective flow in ultrarelativistic carbon-heavy-nucleus collisions. Phys. Rev. C 90, 064902 (2014). https://doi.org/10.1103/PhysRevC.90.064902

    Article  ADS  Google Scholar 

  42. Y.-A. Li, S. Zhang, Y.-G. Ma, Signatures of \(\alpha \)-clustering in \(^{16}\rm O\) by using a multiphase transport model. https://doi.org/10.1103/PhysRevC.102.054907

  43. C.-C. Guo, Y.-G. Ma, Z.-D. An, B.-S. Huang, Influence of alpha-clustering configurations in \(^{16}\)O + \(^{197}\)Au collisions at Fermi energy. Phys. Rev. C 99, 044607 (2019). https://doi.org/10.1103/PhysRevC.99.044607

    Article  ADS  Google Scholar 

  44. C.Z. Shi, Y.G. Ma, \(\alpha \) clustering effect on flows of direct photons in heavy-ion collisions. Nucl. Sci. Tech. 32, 66 (2021). https://doi.org/10.1007/s41365-021-00897-9

    Article  Google Scholar 

  45. Y.-A. Li, D.-F. Wang, S. Zhang, Y.-G. Ma, System scan of the multiplicity correlation between forward and backward rapidities in relativistic heavy-ion collisions using a multi-phase transport model. Chin. Phys. C 46, 044101 (2022). https://doi.org/10.1088/1674-1137/ac3bc9

    Article  ADS  Google Scholar 

  46. Y.-A. Li, D.-F. Wang, S. Zhang, Y.-G. Ma, System evolution of forward-backward multiplicity correlations in a multiphase transport model. Phys. Rev. C 104, 044906 (2021). https://doi.org/10.1103/PhysRevC.104.044906

    Article  ADS  Google Scholar 

  47. B.S. Huang, Y.G. Ma, W.B. He, Photonuclear reaction as a probe for alpha-clustering nuclei in the quasi-deuteron region. Phys. Rev. C 95, 034606 (2017). https://doi.org/10.1103/PhysRevC.95.034606

    Article  ADS  Google Scholar 

  48. B.S. Huang, Y.G. Ma, Two-proton momentum correlation from photodisintegration of \(\alpha \)-clustering light nuclei in the quasi-deuteron region. Phys. Rev. C 101, 034615 (2020). https://doi.org/10.1103/PhysRevC.101.034615

    Article  ADS  Google Scholar 

  49. B.S. Huang, Y.G. Ma, Dipole excitation of \(^{6}\)Li and \(^{9}\)Be studied with an extended quantum molecular dynamics model. Phys. Rev. C 103, 054318 (2021). https://doi.org/10.1103/PhysRevC.103.054318

    Article  ADS  Google Scholar 

  50. M. Freer, H. Horiuchi, Y. Kanada-En’yo, D. Lee, U.-G. Meissner, Microscopic clustering in light nuclei. Rev. Mod. Phys. 90, 035004 (2018). https://doi.org/10.1103/RevModPhys.90.035004

    Article  ADS  MathSciNet  Google Scholar 

  51. W. von Oertzen, M. Freer, Y. Kanada-En’yo, Nuclear clusters and nuclear molecules. Phys. Rep. 432, 43 (2006). https://doi.org/10.1016/j.physrep.2006.07.001

    Article  ADS  Google Scholar 

  52. Y.-G. Ma, Effects of \(\alpha \)-clustering structure on nuclear reaction and relativistic heavy-ion collisions, Nucl. Tech. (in Chinese) 46, 080001 (2023). https://doi.org/10.11889/j.0253-3219.2023.hjs.46.080001

  53. W. Broniowski, E. Ruiz Arriola, Signatures of \(\alpha \) clustering in light nuclei from relativistic nuclear collisions. Phys. Rev. Lett. 112, 112501 (2014). https://doi.org/10.1103/PhysRevLett.112.112501

    Article  ADS  Google Scholar 

  54. S. Zhang, Y.G. Ma, J.H. Chen, W.B. He, C. Zhong, Nuclear cluster structure effect on elliptic and triangular flows in heavy-ion collisions. Phys. Rev. C 95, 064904 (2017). https://doi.org/10.1103/PhysRevC.95.064904

    Article  ADS  Google Scholar 

  55. L. Ma, Y.G. Ma, S. Zhang, Anisotropy fluctuation and correlation in central \(\alpha \)-clustered \(^{12}{{\rm C}}{+^{197}{{\rm Au}}}\) collisions. Phys. Rev. C 102, 014910 (2020). https://doi.org/10.1103/PhysRevC.102.014910

    Article  ADS  Google Scholar 

  56. Y.-Z. Wang, S. Zhang, Y.-G. Ma, System dependence of away-side broadening and \(\alpha \)-clustering light nuclei structure effect in dihadron azimuthal correlations. Phys. Lett. B 831, 137198 (2022). https://doi.org/10.1016/j.physletb.2022.137198

    Article  Google Scholar 

  57. Z.W. Lin, C.M. Ko, B.A. Li, B. Zhang, S. Pal, Multiphase transport model for relativistic heavy ion collisions. Phys. Rev. C 72, 064901 (2005). https://doi.org/10.1103/PhysRevC.72.064901

    Article  ADS  Google Scholar 

  58. M. Souza, H. Miyake, T. Borello-Lewin, C. da Rocha, C. Frajuca, \(\alpha \)-Cluster structure above double-shell closures and \(\alpha \)-decay of \(^{104}\)Te. Phys. Lett. B 793, 8 (2019). https://doi.org/10.1016/j.physletb.2019.04.019

    Article  ADS  Google Scholar 

  59. G. Röpke, P. Schuck, Y. Funaki, H. Horiuchi, Z. Ren, A. Tohsaki, C. Xu, T. Yamada, B. Zhou, Nuclear clusters bound to doubly magic nuclei: the case of \(^{212}{{\rm Po}}\). Phys. Rev. C 90, 034304 (2014). https://doi.org/10.1103/PhysRevC.90.034304

    Article  ADS  Google Scholar 

  60. Z.-W. Lin, L. Zheng, Further developments of a multi-phase transport model for relativistic nuclear collisions. Nucl. Sci. Tech. 32, 113 (2021). https://doi.org/10.1007/s41365-021-00944-5

    Article  Google Scholar 

  61. X.N. Wang, M. Gyulassy, hijing: a Monte–Carlo model for multiple jet production in \({{\rm pp}} {, {{\rm pA}}}\), and \({{\rm AA }}\) collisions. Phys. Rev. D 44, 3501 (1991). https://doi.org/10.1103/PhysRevD.44.3501

    Article  ADS  Google Scholar 

  62. B. Zhang, \(\rm ZPC\) 1.0.1: a parton cascade for ultra relativistic heavy ion collisions. Comput. Phys. Commun. 109, 193 (1998). https://doi.org/10.1016/S0010-4655(98)00010-1

    Article  ADS  Google Scholar 

  63. B. Andersson, G. Gustafson, B. Söderberg, A general model for jet fragmentation. Z. Phys. C 20, 317 (1983). https://doi.org/10.1007/BF01407824

    Article  ADS  Google Scholar 

  64. T. Sjöstrand, High-energy-physics event generation with PYTHIA 5.7 and JETSET 7.4. Comput. Phys. Commun. 82, 74 (1994). https://doi.org/10.1016/0010-4655(94)90132-5

    Article  ADS  Google Scholar 

  65. B.A. Li, C.M. Ko, Formation of super dense hadronic matter in high energy heavy-ion collisions. Phys. Rev. C 52, 2037 (1995). https://doi.org/10.1103/PhysRevC.52.2037

    Article  ADS  Google Scholar 

  66. M.A. Souza, H. Miyake, Search for \(\alpha \)+core states in even–even Cr isotopes. Eur. Phys. J. A 53, 146 (2017). https://doi.org/10.1140/epja/i2017-12339-9

    Article  ADS  Google Scholar 

  67. M.A. Souza, H. Miyake, Search for the \(\alpha +\) core structure in the ground state bands of \(22\le Z\le 42\) even–even nuclei. Phys. Rev. C 104, 064301 (2021). https://doi.org/10.1103/PhysRevC.104.064301

    Article  ADS  Google Scholar 

  68. Y. Funaki, A. Tohsaki, H. Horiuchi, P. Schuck, G. Röpke, Analysis of previous microscopic calculations for the second \({0}^{+}\) state in \({}^{12}{{\rm C}}\) in terms of \(3-\alpha \) particle bose-condensed state. Phys. Rev. C 67, 051306 (2003). https://doi.org/10.1103/PhysRevC.67.051306

    Article  ADS  Google Scholar 

  69. B. Zhou, Y. Funaki, H. Horiuchi, Z. Ren, G. Röpke, P. Schuck, A. Tohsaki, C. Xu, T. Yamada, Nonlocalized clustering: a new concept in nuclear cluster structure physics. Phys. Rev. Lett. 110, 262501 (2013). https://doi.org/10.1103/PhysRevLett.110.262501

    Article  ADS  Google Scholar 

  70. W. Huang, M. Wang, F. Kondev, G. Audi, S. Naimi, The AME 2020 atomic mass evaluation (I). Evaluation of input data, and adjustment procedures. Chinese Phys. C 45, 030002 (2021). https://doi.org/10.1088/1674-1137/abddb0

    Article  ADS  Google Scholar 

  71. G. Röpke, L. Münchow, H. Schulz, Particle clustering and Mott transitions in nuclear matter at finite temperature: (I). Method and general aspects. Nucl. Phys. A 379, 536 (1982). https://doi.org/10.1016/0375-9474(82)90013-6

    Article  ADS  Google Scholar 

  72. R. Wang, Y.-G. Ma, L.-W. Chen, C.M. Ko, K.-J. Sun, Z. Zhang, Kinetic approach of light-nuclei production in intermediate-energy heavy-ion collisions. Phys. Rev. C 108, L031601 (2023). https://doi.org/10.1103/PhysRevC.108.L031601

    Article  ADS  Google Scholar 

  73. S. Yang, C. Xu, G. Röpke, P. Schuck, Z. Ren, Y. Funaki, H. Horiuchi, A. Tohsaki, T. Yamada, B. Zhou, \(\alpha \) decay to a doubly magic core in the quartetting wave function approach. Phys. Rev. C 101, 024316 (2020). https://doi.org/10.1103/PhysRevC.101.024316

    Article  ADS  Google Scholar 

  74. C. Xu, Z. Ren, G. Röpke, P. Schuck, Y. Funaki, H. Horiuchi, A. Tohsaki, T. Yamada, B. Zhou, \(\alpha \)-decay width of \(^{212}{{\rm Po}}\) from a quartetting wave function approach. Phys. Rev. C 93, 011306 (2016). https://doi.org/10.1103/PhysRevC.93.011306

    Article  ADS  Google Scholar 

  75. H.-C. Song, Y. Zhou, K. Gajdošová, Collective flow and hydrodynamics in large and small systems at the LHC. Nucl. Sci. Tech. 28, 99 (2017). https://doi.org/10.1007/s41365-017-0245-4

    Article  Google Scholar 

  76. A.M. Poskanzer, S.A. Voloshin, Methods for analyzing anisotropic flow in relativistic nuclear collisions. Phys. Rev. C 58, 1671 (1998). https://doi.org/10.1103/PhysRevC.58.1671

    Article  ADS  Google Scholar 

  77. Y.G. Ma, The collective flow from the degree of freedom of nucleons to quarks. J. Fudan Univ. (Nat. Sci.) 62, 273 (2023). https://doi.org/10.15943/j.cnki.fdxb-jns.20230525.001

  78. M. Wang, J.Q. Tao, H. Zheng, W.C. Zhang, L.L. Zhu, A. Bonasera, Number-of-constituent-quark scaling of elliptic flow: a quantitative study. Nucl. Sci. Tech. 33, 37 (2022). https://doi.org/10.1007/s41365-022-01019-9

  79. S.W. Lan, S.S. Shi, Anisotropic flow in high baryon density region. Nucl. Sci. Tech. 33, 21 (2022). https://doi.org/10.1007/s41365-022-01006-0

    Article  Google Scholar 

  80. H. Wang, J.H. Chen, Anisotropy flows in Pb–Pb collisions at LHC energies from parton scatterings with heavy quark trigger. Nucl. Sci. Tech. 33, 15 (2022). https://doi.org/10.1007/s41365-022-00999-y

    Article  Google Scholar 

  81. H.-X. Zhang, Y.-X. Xiao, J.-W. Kang, B.-W. Zhang, Phenomenological study of the anisotropic quark matter in the two-flavor Nambu–Jona–Lasinio model. Nucl. Sci. Tech. 33, 150 (2022). https://doi.org/10.1007/s41365-022-01129-4

  82. V. Khachatryan, CMS Collaboration et al., Evidence for collectivity in pp collisions at the LHC. Phys. Lett. B 765, 193 (2017). https://doi.org/10.1016/j.physletb.2016.12.009

  83. A. Bilandzic, R. Snellings, S. Voloshin, Flow analysis with cumulants: direct calculations. Phys. Rev. C 83, 044913 (2011). https://doi.org/10.1103/PhysRevC.83.044913

    Article  ADS  Google Scholar 

  84. J. Jia, M. Zhou, A. Trzupek, Revealing long-range multiparticle collectivity in small collision systems via subevent cumulants. Phys. Rev. C 96, 034906 (2017). https://doi.org/10.1103/PhysRevC.96.034906

    Article  ADS  Google Scholar 

  85. Y.G. Ma, W.Q. Shen, Correlation functions and the disappearance of rotational collective motion in nucleus–nucleus collisions below 100 MeV/nucleon. Phys. Rev. C 51, 3256 (1995). https://doi.org/10.1103/PhysRevC.51.3256

    Article  ADS  Google Scholar 

  86. S. Chatrchyan, CMS Collaboration et al., Multiplicity and transverse momentum dependence of two- and four-particle correlations in pPb and PbPb collisions. Phys. Lett. B 724, 213 (2013). https://doi.org/10.1016/j.physletb.2013.06.028

  87. M.S. Abdallah, STAR Collaboration et al., Search for the chiral magnetic effect with isobar collisions at \(\sqrt{{s}_{NN}}=200\) GeV by the STAR Collaboration at the BNL Relativistic Heavy Ion Collider. Phys. Rev. C 105, 014901 (2022). https://doi.org/10.1103/PhysRevC.105.014901

  88. G. Aad, ATLAS Collaboration et al., Centrality and rapidity dependence of inclusive jet production in sNN=5.02 TeV proton-lead collisions with the ATLAS detector. Phys. Lett. B 748, 392 (2015). https://doi.org/10.1016/j.physletb.2015.07.023

  89. S. Zhang, Y.G. Ma, G.L. Ma, J.H. Chen, Q.Y. Shou, W.B. He, C. Zhong, Collision system size scan of collective flows in relativistic heavy-ion collisions. Phys. Lett. B 804, 135366 (2020). https://doi.org/10.1016/j.physletb.2020.135366

    Article  Google Scholar 

  90. Z. Qiu, U. Heinz, Event-by-event shape and flow fluctuations of relativistic heavy-ion collision fireballs. Phys. Rev. C 84, 024911 (2011). https://doi.org/10.1103/PhysRevC.84.024911

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by National Key R &D Program of China under Grant No. 2018YFE0104600 and 2016YFE0100900, the National Natural Science Foundation of China under contract Nos. 12275054, 11890710, 11890714, 11925502, 12147101, 12061141008 and 11875066, the Strategic Priority Research Program of CAS under Grant No. XDB34000000, the Guangdong Major Project of Basic and Applied Basic Research No. 2020B0301030008, Shanghai Special Project for Basic Research No. 22TQ006 and the STCSM under Grant No. 23590780100.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Gang Ma.

Ethics declarations

Code Availability Statement

This manuscript has no associated code/software. [Author’s comment: xxx.].

Additional information

Communicated by David Blaschke.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, YX., Zhang, S. & Ma, YG. Signatures of an \(\alpha \) + core structure in \(^{44}\)Ti + \(^{44}\)Ti collisions at \(\sqrt{s_{NN}}=5.02\) TeV by a multiphase transport model. Eur. Phys. J. A 60, 73 (2024). https://doi.org/10.1140/epja/s10050-024-01290-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-024-01290-x

Navigation