Skip to main content
Log in

Quantum techniques for eigenvalue problems

  • Review
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

A Publisher Erratum to this article was published on 30 January 2024

This article has been updated

Abstract

This article is a brief introduction to quantum algorithms for the eigenvalue problem in quantum many-body systems. Rather than a broad survey of topics, we focus on providing a conceptual understanding of several quantum algorithms that cover the essentials of adiabatic evolution, variational methods, phase detection algorithms, and several other approaches. For each method, we discuss the potential advantages and remaining challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This article describes algorithms with derivations, and all information needed to reproduce the work is contained within the article itself.]

Change history

References

  1. E. Loh Jr., J. Gubernatis, R. Scalettar, S. White, D. Scalapino, R. Sugar, Sign problem in the numerical simulation of many-electron systems. Phys. Rev. B 41(13), 9301 (1990)

    Article  ADS  Google Scholar 

  2. P. Henelius, A.W. Sandvik, Sign problem in Monte Carlo simulations of frustrated quantum spin systems. Phys. Rev. B 62(2), 1102 (2000)

    Article  ADS  Google Scholar 

  3. Y. Alhassid, C.N. Gilbreth, G.F. Bertsch, Nuclear deformation at finite temperature. Phys. Rev. Lett. 113(26), 262503 (2014). https://doi.org/10.1103/PhysRevLett.113.262503. arXiv:1408.0081 [nucl-th]

  4. T.A. Lähde, T. Luu, D. Lee, U.-G. Meißner, E. Epelbaum, H. Krebs, G. Rupak, Nuclear Lattice Simulations using Symmetry-Sign Extrapolation. Eur. Phys. J. A 51(7), 92 (2015). https://doi.org/10.1140/epja/i2015-15092-1. arXiv:1502.06787 [nucl-th]

  5. D. Frame, R. He, I. Ipsen, D. Lee, D. Lee, E. Rrapaj, Eigenvector continuation with subspace learning. Phys. Rev. Lett. 121(3), 032501 (2018). https://doi.org/10.1103/PhysRevLett.121.032501. arXiv:1711.07090 [nucl-th]

  6. D. Lonardoni, S. Gandolfi, J.E. Lynn, C. Petrie, J. Carlson, K.E. Schmidt, A. Schwenk, Auxiliary field diffusion Monte Carlo calculations of light and medium-mass nuclei with local chiral interactions. Phys. Rev. C 97(4), 044318 (2018). https://doi.org/10.1103/PhysRevC.97.044318. arXiv:1802.08932 [nucl-th]

  7. J. Chow, O. Dial, J. Gambetta, Ibm quantum breaks the 100-qubit processor barrier. IBM Research Blog 2 (2021)

  8. E. Pelofske, A. Bärtschi, S. Eidenbenz, Quantum volume in practice: What users can expect from nisq devices. IEEE Transactions on Quantum Engineering 3, 1–19 (2022)

    Article  Google Scholar 

  9. B. Neyenhuis, Quantinuum’s h-series quantum computers B. Am. Phys, Soc. (2023)

  10. T. Ayral, P. Besserve, D. Lacroix, Ruiz Guzman (Quantum computing with and for many-body physics, E.A., 2023). arXiv:2303.04850 [quant-ph]

    Google Scholar 

  11. P.O. Boykin, T. Mor, V. Roychowdhury, F. Vatan, R. Vrijen, Algorithmic cooling and scalable nmr quantum computers. Proc. Natl. Acad. Sci. 99(6), 3388–3393 (2002)

    Article  ADS  Google Scholar 

  12. F. Rempp, M. Michel, G. Mahler, Cyclic cooling algorithm. Phys. Rev. A 76(3), 032325 (2007)

    Article  ADS  Google Scholar 

  13. D. Lee, J. Bonitati, G. Given, C. Hicks, N. Li, B.-N. Lu, A. Rai, A. Sarkar, J. Watkins, Projected Cooling Algorithm for Quantum Computation. Phys. Lett. B 807, 135536 (2020). https://doi.org/10.1016/j.physletb.2020.135536. arXiv:1910.07708 [quant-ph]

  14. E. Gustafson, Projective Cooling for the transverse Ising model. Phys. Rev. D 101(7), 071504 (2020). https://doi.org/10.1103/PhysRevD.101.071504. arXiv:2002.06222 [hep-lat]

    Article  ADS  MathSciNet  Google Scholar 

  15. C. Ball, T.D. Cohen, Boltzmann Distributions on a Quantum Computer via Active Cooling (2022). arXiv:2212.06730 [quant-ph]

  16. P.O. Boykin, T. Mor, V. Roychowdhury, F. R. V. Vatan, Algorithmic cooling and scalable NMR quantum computers. Proc. Natl. Acad. Sci. 99, 3388 (2002). https://doi.org/10.1073/pnas.241641898

  17. J.-S. Xu, M.-H. Yung, X.-Y. Xu, S. Boixo, Z.-W. Zhou, C.-F. Li, A. Aspuru-Guzik, G.-C, Guo, Demon-like algorithmic quantum cooling and its realization with quantum optics. Nat. Photon. 8, 113 (2014). https://doi.org/10.1038/nphoton.2013.354

  18. B. Kraus, H.P. Büchler, S. Diehl, A. Kantian, A. Micheli, P. Zoller, Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008). https://doi.org/10.1103/PhysRevA.78.042307

  19. F. Verstraete, M.M. Wolf, J. Ignacio Cirac, Quantum computation and quantum-state engineering driven by dissipation. Nat. Phys. 5, 633 (2009). https://doi.org/10.1038/nphys1342

  20. I. Sinayskiy, F. Petruccione, Efficiency of open quantum walk implementation of dissipative quantum computing algorithms. Quant. Inf. Process. 11, 1301–1309 (2012)

    Article  MathSciNet  Google Scholar 

  21. D.B. Kaplan, N. Klco, A. Roggero, Ground States via Spectral Combing on a Quantum Computer (2017). arXiv:1709.08250 [quant-ph]

  22. T.-C. Yen, R.A. Lang, A.F. Izmaylov, Exact and approximate symmetry projectors for the electronic structure problem on a quantum computer. J. Chem. Phys. 151(16) (2019)

  23. P. Siwach, D. Lacroix, Filtering states with total spin on a quantum computer. Phys. Rev. A 104(6), 062435 (2021). https://doi.org/10.1103/PhysRevA.104.062435. arXiv:2106.10867 [quant-ph]

    Article  ADS  MathSciNet  Google Scholar 

  24. E.A. Ruiz Guzman, D. Lacroix, Accessing ground-state and excited-state energies in a many-body system after symmetry restoration using quantum computers. Phys. Rev. C 105(2), 024324 (2022). https://doi.org/10.1103/PhysRevC.105.024324. arXiv:2111.13080 [quant-ph]

    Article  ADS  Google Scholar 

  25. K. Seki, S. Yunoki, Spatial, spin, and charge symmetry projections for a fermi-hubbard model on a quantum computer. Phys. Rev. A 105(3), 032419 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  26. D. Lacroix, E.A. Ruiz Guzman, P. Siwach, Symmetry breaking/symmetry preserving circuits and symmetry restoration on quantum computers: A quantum many-body perspective. Eur. Phys. J. A 59(1), 3 (2023). https://doi.org/10.1140/epja/s10050-022-00911-7. arXiv:2208.11567 [quant-ph]

    Article  ADS  Google Scholar 

  27. A.M. Childs, N. Wiebe, Hamiltonian Simulation Using Linear Combinations of Unitary Operations. arXiv e-prints, 1202–5822 (2012). https://doi.org/10.48550/arXiv.1202.5822. arXiv:1202.5822 [quant-ph]

  28. A. Roggero, C. Gu, A. Baroni, T. Papenbrock, Preparation of excited states for nuclear dynamics on a quantum computer. Phys. Rev. C 102(6), 064624 (2020). https://doi.org/10.1103/PhysRevC.102.064624. arXiv:2009.13485 [quant-ph]

    Article  ADS  Google Scholar 

  29. P. Lv, S.-J. Wei, H.-N. Xie, G.-L. Long, QCSH: a full quantum computer nuclear shell-model package. Sci. Chin. Phys. Mech. Astron. 66(4), 240311 (2023). https://doi.org/10.1007/s11433-022-2044-5. arXiv:2205.12087 [quant-ph]

    Article  ADS  Google Scholar 

  30. P. Siwach, P. Arumugam, Quantum computation of nuclear observables involving linear combinations of unitary operators. Phys. Rev. C 105(6), 064318 (2022). https://doi.org/10.1103/PhysRevC.105.064318. arXiv:2206.08510 [quant-ph]

    Article  ADS  Google Scholar 

  31. R. Meister, S.C. Benjamin, E.T. Campbell, Tailoring term truncations for electronic structure calculations using a linear combination of unitaries. Quantum 6, 637 (2022)

    Article  Google Scholar 

  32. M. Motta, C. Sun, A.T.K. Tan, M.J. O’Rourke, E. Ye, A.J. Minnich, F.G.S.L. Brandão, G.K.-L. Chan, Determining eigenstates and thermal states on a quantum computer using quantum imaginary time evolution. Nat. Phys. 16(2), 205–210 (2019). https://doi.org/10.1038/s41567-019-0704-4

    Article  Google Scholar 

  33. S. McArdle, T. Jones, S. Endo, Y. Li, S.C. Benjamin, X. Yuan, Variational ansatz-based quantum simulation of imaginary time evolution. NPJ Quant. Inf. 5(1), 75 (2019)

  34. K. Yeter-Aydeniz, R.C. Pooser, G. Siopsis, Practical quantum computation of chemical and nuclear energy levels using quantum imaginary time evolution and lanczos algorithms. NPJ Quant. Inf. 6(1), 63 (2020)

  35. F. Turro, A. Roggero, V. Amitrano, P. Luchi, K.A. Wendt, J.L. DuBois, S. Quaglioni, F. Pederiva, Imaginary-time propagation on a quantum chip. Phys. Rev. A 105(2), 022440 (2022). https://doi.org/10.1103/PhysRevA.105.022440. arXiv:2102.12260 [quant-ph]

    Article  ADS  Google Scholar 

  36. P. Jouzdani, C.W. Johnson, E.R. Mucciolo, I. Stetcu, Alternative approach to quantum imaginary time evolution. Phys. Rev. A 106(6), 062435 (2022). https://doi.org/10.1103/PhysRevA.106.062435. arXiv:2208.10535 [quant-ph]

    Article  ADS  Google Scholar 

  37. M. Born, V. Fock, Beweis des adiabatensatzes. Zeitschrift für Physik 51, 435–439 (1950) https://doi.org/10.1007/BF01343193

  38. T. Kato, On the adiabatic theorem of quantum mechanics. J. Phys. Soc. Jpn. 5(6), 435–439 (1950). https://doi.org/10.1143/JPSJ.5.435

    Article  ADS  Google Scholar 

  39. E. Farhi, J. Goldstone, S. Gutmann, M. Sipser, Quantum Computation by Adiabatic Evolution. arXiv e-prints, 0001106 (2000). arXiv:quant-ph/0001106

  40. E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, A quantum adiabatic evolution algorithm applied to random instances of an np-complete problem. Science 292(5516), 472–475 (2001). https://doi.org/10.1126/science.1057726

    Article  ADS  MathSciNet  Google Scholar 

  41. A.M. Childs, E. Farhi, J. Preskill, Robustness of adiabatic quantum computation. Phys. Rev. A 65(1), 012322 (2001)

    Article  ADS  Google Scholar 

  42. W. Van Dam, M. Mosca, U. Vazirani, How powerful is adiabatic quantum computation? In: Proceedings 42nd IEEE Symposium on Foundations of Computer Science, pp. 279–287 (2001). IEEE

  43. E. Farhi, J. Goldstone, S. Gutmann, Quantum adiabatic evolution algorithms with different paths. arXiv preprint arXiv:quant-ph/0208135 (2002)

  44. J. Roland, N.J. Cerf, Quantum search by local adiabatic evolution. Phys. Rev. A 65(4), 042308 (2002)

    Article  ADS  Google Scholar 

  45. G.E. Santoro, E. Tosatti, Optimization using quantum mechanics: quantum annealing through adiabatic evolution. J. Phys. A: Math. Gen. 39(36), 393 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  46. N. Wiebe, N.S. Babcock, Improved error-scaling for adiabatic quantum evolutions. New J. Phys. 14(1), 013024 (2012). https://doi.org/10.1088/1367-2630/14/1/013024. arXiv:1105.6268 [quant-ph]

    Article  ADS  Google Scholar 

  47. P. Richerme, C. Senko, J. Smith, A. Lee, S. Korenblit, C. Monroe, Experimental performance of a quantum simulator: optimizing adiabatic evolution and identifying many-body ground states. Phys. Rev. A 88(1), 012334 (2013)

    Article  ADS  Google Scholar 

  48. T. Albash, D.A. Lidar, Adiabatic quantum computation. Rev. Mod. Phys. 90, 015002 (2018). https://doi.org/10.1103/RevModPhys.90.015002

  49. E.A. Coello Pérez, J. Bonitati, D. Lee, S. Quaglioni, K.A. Wendt, Quantum state preparation by adiabatic evolution with custom gates. Phys. Rev. A 105(3), 032403 (2022). https://doi.org/10.1103/PhysRevA.105.032403. arXiv:2111.12207 [quant-ph]

    Article  ADS  MathSciNet  Google Scholar 

  50. D. Vreumingen, K. Schoutens, Adiabatic ground state preparation of fermionic many-body systems from a two-body perspective (2023). arXiv:2305.01284 [quant-ph]

  51. S. Elhatisari, et al.: Wave function matching for the quantum many-body problem (2022). arXiv:2210.17488 [nucl-th]

  52. J. Avron, R. Seiler, L. Yaffe, Adiabatic theorems and applications to the quantum hall effect. Commun. Math. Phys. 110, 33–49 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  53. J. Avron, R. Seiler, L. Yaffe, Adiabatic theorems and applications to the quantum hall effect. Comm. Math. Phys. 156, 649–649 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  54. M. Klein, R. Seiler, Power-law corrections to the kubo formula vanish in quantum hall systems. Commun. Math. Phys. 128, 141–160 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  55. S. Jansen, M.-B. Ruskai, R. Seiler, Bounds for the adiabatic approximation with applications to quantum computation. J. Math. Phys. 48(10) (2007) https://doi.org/10.1063/1.2798382 https://pubs.aip.org/aip/jmp/article-pdf/doi/10.1063/1.2798382/16055030/102111_1_online.pdf. 102111

  56. A. Sarkar, D. Lee, U.-G. Meißner, Floating block method for quantum Monte Carlo simulations (2023). arXiv:2306.11439 [nucl-th]

  57. H.F. Trotter, On the product of semi-groups of operators. Proc. Am. Math. Soc. 10(4), 545–551 (1959)

    Article  MathSciNet  Google Scholar 

  58. M. Suzuki, General decomposition theory of ordered exponentials. Proc. Jpn. Acad. Ser. B 69(7), 161–166 (1993). https://doi.org/10.2183/pjab.69.161

    Article  ADS  Google Scholar 

  59. A.M. Childs, A. Ostrander, Y. Su, Faster quantum simulation by randomization. Quantum 3, 182 (2019)

    Article  Google Scholar 

  60. E. Campbell, Random compiler for fast hamiltonian simulation. Phys. Rev. Lett. 123(7), 070503 (2019)

    Article  ADS  Google Scholar 

  61. G.H. Low, V. Kliuchnikov, N. Wiebe, Well-conditioned multiproduct hamiltonian simulation. arXiv preprint arXiv:1907.11679 (2019)

  62. J. Watkins, N. Wiebe, A. Roggero, D. Lee, Time-dependent hamiltonian simulation using discrete clock constructions. arXiv preprint arXiv:2203.11353 (2022)

  63. P.K. Faehrmann, M. Steudtner, R. Kueng, M. Kieferova, J. Eisert, Randomizing multi-product formulas for Hamiltonian simulation. Quantum 6, 806 (2022)

    Article  Google Scholar 

  64. G. Rendon, J. Watkins, N. Wiebe, Improved error scaling for trotter simulations through extrapolation. arXiv preprint arXiv:2212.14144 (2022)

  65. M. Carena, H. Lamm, Y.-Y. Li, W. Liu, Lattice renormalization of quantum simulations. Phys. Rev. D 104(9), 094519 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  66. R.M. Parrish, P.L. McMahon, Quantum Filter Diagonalization: Quantum Eigendecomposition without Full Quantum Phase Estimation. arXiv e-prints, 1909–08925 (2019) https://doi.org/10.48550/arXiv.1909.08925. arXiv:1909.08925 [quant-ph]

  67. A. Francis, A.A. Agrawal, J.H. Howard, E. Kökcü, A.F. Kemper, Subspace Diagonalization on Quantum Computers using Eigenvector Continuation. arXiv e-prints, 2209–10571 (2022) https://doi.org/10.48550/arXiv.2209.10571. arXiv:2209.10571 [quant-ph]

  68. Y. Yang, Z. Zhang, X. Xu, B. Lu, Y. Li, Quantum algorithms for optimal effective theory of many-body systems. arXiv e-prints, 2211–14854 (2022) https://doi.org/10.48550/arXiv.2211.14854. arXiv:2211.14854 [quant-ph]

  69. C.L. Cortes, S.K. Gray, Quantum Krylov subspace algorithms for ground- and excited-state energy estimation. Phys. Rev. A 105(2), 022417 (2022). https://doi.org/10.1103/PhysRevA.105.022417. arXiv:2109.06868 [quant-ph]

    Article  ADS  MathSciNet  Google Scholar 

  70. C. Mejuto-Zaera, A.F. Kemper, Quantum Eigenvector Continuation for Chemistry Applications. arXiv e-prints, 2305–00060 (2023). https://doi.org/10.48550/arXiv.2305.00060. arXiv:2305.00060 [physics.chem-ph]

  71. A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou, P.J. Love, A. Aspuru-Guzik, J.L. O’brien, A variational eigenvalue solver on a photonic quantum processor. Nat. Commun. 5(1), 4213 (2014)

  72. M. Cerezo, A. Arrasmith, R. Babbush, S.C. Benjamin, S. Endo, K. Fujii, J.R. McClean, K. Mitarai, X. Yuan, L. Cincio, Variational quantum algorithms. Nat. Rev. Phys. 3(9), 625–644 (2021)

    Article  Google Scholar 

  73. J.R. McClean, S. Boixo, V.N. Smelyanskiy, R. Babbush, H. Neven, Barren plateaus in quantum neural network training landscapes. Nat. Commun. 9(1), 4812 (2018)

    Article  ADS  Google Scholar 

  74. A. Mari, T.R. Bromley, N. Killoran, Estimating the gradient and higher-order derivatives on quantum hardware. Phys. Rev. A 103(1), 012405 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  75. E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014)

  76. R.M. Karp, Reducibility Among Combinatorial Problems (Springer, Boston, MA, 2010)

    Book  Google Scholar 

  77. L. Bittel, M. Kliesch, Training variational quantum algorithms is np-hard. Phys. Rev. Lett. 127, 120502 (2021). https://doi.org/10.1103/PhysRevLett.127.120502

  78. A. Kandala, A. Mezzacapo, K. Temme, M. Takita, M. Brink, J.M. Chow, J.M. Gambetta, Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature 549(7671), 242–246 (2017)

    Article  ADS  Google Scholar 

  79. E.F. Dumitrescu, A.J. McCaskey, G. Hagen, G.R. Jansen, T.D. Morris, T. Papenbrock, R.C. Pooser, D.J. Dean, P. Lougovski, Cloud Quantum Computing of an Atomic Nucleus. Phys. Rev. Lett. 120, 210501 (2018). https://doi.org/10.1103/PhysRevLett.120.210501. arXiv:1801.03897 [quant-ph]

  80. Z. Qian, J. Watkins, G. Given, J. Bonitati, K. Choi, D. Lee, Demonstration of the Rodeo Algorithm on a Quantum Computer (2021). arXiv:2110.07747 [quant-ph]

  81. O. Kiss, M. Grossi, P. Lougovski, F. Sanchez, S. Vallecorsa, T. Papenbrock, Quantum computing of the \(^6\)Li nucleus via ordered unitary coupled cluster. Phys. Rev. C 106(3), 034325 (2022). https://doi.org/10.1103/PhysRevC.106.034325. arXiv:2205.00864 [nucl-th]

  82. J. Tilly, H. Chen, S. Cao, D. Picozzi, K. Setia, Y. Li, E. Grant, L. Wossnig, I. Rungger, G.H. Booth, The variational quantum eigensolver: a review of methods and best practices. Phys. Rep. 986, 1–128 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  83. M.Q. Hlatshwayo, Y. Zhang, H. Wibowo, R. LaRose, D. Lacroix, E. Litvinova, Simulating excited states of the Lipkin model on a quantum computer. Phys. Rev. C 106(2), 024319 (2022). https://doi.org/10.1103/PhysRevC.106.024319. arXiv:2203.01478 [nucl-th]

  84. Pérez-Obiol, A., Romero, A.M., Menéndez, J., Rios, A., García-Sáez, A., Juliá-Díaz, B.: Nuclear shell-model simulation in digital quantum computers (2023) arXiv:2302.03641 [quant-ph]

  85. C. Sarma, O. Di Matteo, A. Abhishek, P.C. Srivastava, Prediction of the neutron drip line in oxygen isotopes using quantum computation (2023). arXiv:2306.06432 [nucl-th]

  86. P. Jordan, E.P. Wigner, Über das paulische äquivalenzverbot. Z. Physik 47, 631–651 (1928)

    Article  ADS  Google Scholar 

  87. S.B. Bravyi, A.Y. Kitaev, Fermionic quantum computation. Ann. Phys. 298(1), 210–226 (2002). https://doi.org/10.1006/aphy.2002.6254

    Article  ADS  MathSciNet  Google Scholar 

  88. F. Verstraete, J.I. Cirac, Mapping local hamiltonians of fermions to local hamiltonians of spins. J. Stat. Mech: Theory Exp. 2005(09), 09012 (2005)

    Article  MathSciNet  Google Scholar 

  89. J.D. Whitfield, V. Havlíček, M. Troyer, Local spin operators for fermion simulations. Phys. Rev. A 94(3), 030301 (2016)

    Article  ADS  Google Scholar 

  90. M. Steudtner, S. Wehner, Fermion-to-qubit mappings with varying resource requirements for quantum simulation. New J. Phys. 20(6), 063010 (2018)

    Article  ADS  Google Scholar 

  91. C. Derby, J. Klassen, J. Bausch, T. Cubitt, Compact fermion to qubit mappings. Phys. Rev. B 104(3), 035118 (2021)

    Article  ADS  Google Scholar 

  92. J. Nys, G. Carleo, Quantum circuits for solving local fermion-to-qubit mappings. Quantum 7, 930 (2023)

    Google Scholar 

  93. D.J. Thouless, Stability conditions and nuclear rotations in the hartree-fock theory. Nucl. Phys. 21, 225–232 (1960)

    Article  MathSciNet  Google Scholar 

  94. G.A. Quantum, Collaborators*\(\dagger \), F. Arute, K. Arya, R. Babbush, D.Bacon, J.C.Bardin, R. Barends, S., Boixo, M. Broughton, B.B. Buckley, D.A. Buell, B. Burkett, N. Bushnell, Y. Chen, Z. Chen, B. Chiaro, R. Collins, W. Courtney, S. Demura, A. Dunsworth, E. Farhi, A. Fowler, B. Foxen, C.Gidney, M. Giustina, R. Graff, S. Habegger, M.P. Harrigan, A. Ho, S. Hong, T. Huang, W.J. Huggins, L. Ioffe, S.V. Isakov, E. Jeffrey, Z. Jiang, C. Jones, D. Kafri, K. Kechedzhi, J. Kelly, S. Kim, P.V. Klimov, A. Korotkov, F. Kostritsa, D. Landhuis, P. Laptev, M. Lindmark, E. Lucero, O. Martin, J.M. Martinis, J.R. McClean, M. McEwen, A. Megrant, X. Mi, M. Mohseni, W. Mruczkiewicz, J. Mutus, O. Naaman, M. Neeley, C. Neill, H. Neven, M.Y. Niu, T.E. O’Brien, E. Ostby, A. Petukhov, H. Putterman, C. Quintana, P. Roushan, N.C. Rubin, D. Sank, K.J. Satzinger, V. Smelyanskiy, D. Strain, K.J. Sung, M. Szalay, T.Y. Takeshita, A. Vainsencher, T. White, N. Wiebe, Z.J. Yao, P. Yeh, A. Zalcman, Hartree-fock on a superconducting qubit quantum computer. Science 369(6507), 1084–1089 (2020). https://doi.org/10.1126/science.abb9811

  95. A.Yu. Kitaev, Quantum measurements and the Abelian stabilizer problem. Electronic Colloquium on Computational Complexity 3 (1995). arXiv:quant-ph/9511026 [quant-ph]

  96. D.S. Abrams, S. Lloyd, Simulation of many body Fermi systems on a universal quantum computer. Phys. Rev. Lett. 79, 2586–2589 (1997). https://doi.org/10.1103/PhysRevLett.79.2586. arXiv:quant-ph/9703054

  97. U. Dorner, R. Demkowicz-Dobrzanski, B.J. Smith, J.S. Lundeen, W. Wasilewski, K. Banaszek, I.A. Walmsley, Optimal quantum phase estimation. Phys. Rev. Lett. 102(4), 040403 (2009)

    Article  ADS  Google Scholar 

  98. K.M. Svore, M.B. Hastings, M. Freedman, Faster phase estimation. arXiv preprint arXiv:1304.0741 (2013)

  99. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2010)

    Google Scholar 

  100. M. Dobšíček, G. Johansson, V. Shumeiko, G. Wendin, Arbitrary accuracy iterative quantum phase estimation algorithm using a single ancillary qubit: a two-qubit benchmark. Phys. Rev. A 76(3), 030306 (2007)

    Article  ADS  Google Scholar 

  101. C.J. O’Loan, Iterative phase estimation. J. Phys. A-Math. Theory 43(1), 015301 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  102. B.P. Lanyon, J.D. Whitfield, G.G. Gillett, M.E. Goggin, M.P. Almeida, I. Kassal, J.D. Biamonte, M. Mohseni, B.J. Powell, M. Barbieri, Towards quantum chemistry on a quantum computer. Nat. Chem. 2(2), 106–111 (2010)

    Article  Google Scholar 

  103. N. Wiebe, C. Granade, Efficient Bayesian phase estimation. Phys. Rev. Lett. 117(1), 010503 (2016)

    Article  ADS  Google Scholar 

  104. Z. Ding, L. Lin, Even shorter quantum circuit for phase estimation on early fault-tolerant quantum computers with applications to ground-state energy estimation. PRX Quant. 4(2), 020331 (2023)

    Article  ADS  MathSciNet  Google Scholar 

  105. K. Choi, D. Lee, J. Bonitati, Z. Qian, J. Watkins, Rodeo Algorithm for Quantum Computing. Phys. Rev. Lett. 127(4), 040505 (2021). https://doi.org/10.1103/PhysRevLett.127.040505. arXiv:2009.04092 [quant-ph]

    Article  ADS  MathSciNet  Google Scholar 

  106. M. Bee-Lindgren, et al.: Rodeo algorithm with controlled reversal gates. work in progress (2022)

  107. W. Qian, R. Basili, S. Pal, G. Luecke, J.P. Vary, Solving hadron structures using the basis light-front quantization approach on quantum computers. Phys. Rev. Res. 4(4), 043193 (2022). https://doi.org/10.1103/PhysRevResearch.4.043193. arXiv:2112.01927 [quant-ph]

    Article  Google Scholar 

  108. Y. Ge, J. Tura, J.I. Cirac, Faster ground state preparation and high-precision ground energy estimation with fewer qubits. J. Math. Phys. 60(2) (2019)

  109. S. Lu, M.C. Banuls, J.I. Cirac, Algorithms for quantum simulation at finite energies. PRX Quant. 2(2), 020321 (2021)

    Article  ADS  Google Scholar 

  110. I. Stetcu, A. Baroni, J. Carlson, Projection algorithm for state preparation on quantum computers (2022). arXiv:2211.10545 [quant-ph]

  111. T.D. Cohen, H. Oh, Optimizing rodeo projection (2023). arXiv:2305.19952 [quant-ph]

Download references

Acknowledgements

The author acknowledges support from the U.S. National Science Foundation (PHY-2310620), U.S. Department of Energy (DE-SC0021152, DE-SC0013365, DE-SC0023658) and the SciDAC-4 and SciDAC-5 NUCLEI Collaborations. This research used resources of the Oak Ridge Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC05-00OR22725.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dean Lee.

Additional information

Communicated by Thomas Duguet.

The original online version of this article was revised: The equation “\(e^A e^B = e^C\)” in the preceding sentence, just before Eq. (6), was inaccurately presented.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, D. Quantum techniques for eigenvalue problems. Eur. Phys. J. A 59, 275 (2023). https://doi.org/10.1140/epja/s10050-023-01183-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-023-01183-5

Navigation