Skip to main content
Log in

Shape evolution in even-mass \(^{98-104}\)Zr isotopes via lifetime measurements using the \(\gamma \gamma \)-coincidence technique

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The Zirconium (Z = 40) isotopic chain has attracted interest for more than four decades. The abrupt lowering of the energy of the first \(2^+\) state and the increase in the transition strength B(E2; \(2^+_1\rightarrow 0^+_1)\) going from \(^{98}\)Zr to \(^{100}\)Zr has been the first example of “quantum phase transition” in nuclear shapes, which has few equivalents in the nuclear chart. Although a multitude of experiments have been performed to measure nuclear properties related to nuclear shapes and collectivity in the region, none of the measured lifetimes were obtained using the Recoil Distance Doppler Shift method in the \(\gamma \gamma \)-coincidence mode where a gate on the direct feeding transition of the state of interest allows a strict control of systematical errors. This work reports the results of lifetime measurements for the first yrast excited states in \(^{98-104}\)Zr carried out to extract reduced transition probabilities. The new lifetime values in \(\gamma \gamma \)-coincidence and \(\gamma \)-single mode are compared with the results of former experiments. Recent predictions of the Interacting Boson Model with Configuration Mixing, the Symmetry Conserving Configuration Mixing model based on the Hartree–Fock–Bogoliubov approach and the Monte Carlo Shell Model are presented and compared with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

The values are taken from the Evaluated Nuclear Structure Data File [5]

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: The data may be available upon request to the AGATA collaboration.]

References

  1. D.A. Arseniev, A. Sobieczewski, V.G. Soloviev, Nucl. Phys. A 139, 269 (1969)

    Article  ADS  Google Scholar 

  2. S.A.E. Johansson, Nucl. Phys. 64, 147–160 (1965). https://doi.org/10.1016/0029-5582(65)90847-3

    Article  Google Scholar 

  3. E. Cheifetz, R.C. Jared, S.G. Thompson, J.B. Wilhelmy, Phys. Rev. Lett. 25, 38 (1970). https://doi.org/10.1103/PhysRevLett.25.38

    Article  ADS  Google Scholar 

  4. A.G. Blair, J.G. Beery, E.R. Flynn, Phys. Rev. Lett. 22, 470 (1969). https://doi.org/10.1103/PhysRevLett.22.470

    Article  ADS  Google Scholar 

  5. From ENSDF database as of April 12, 2023. Version available at http://www.nndc.bnl.gov/ensarchivals/

  6. P. Federman, S. Pittel, Phys. Lett. B 69, 385–388 (1977). https://doi.org/10.1016/0370-2693(77)90825-5

    Article  ADS  Google Scholar 

  7. P. Federman, S. Pittel, R. Campos, Phys. Lett. B 82, 9–12 (1979). https://doi.org/10.1016/0370-2693(79)90412-XP

    Article  ADS  Google Scholar 

  8. P. Federman, S. Pittel, Phys. Rev. C 20, 820 (1979). https://doi.org/10.1103/PhysRevC.20.820

    Article  ADS  Google Scholar 

  9. A. Etchegoyen, P. Federman, E.G. Vergini, Phys. Rev. C 39, 1130–1133 (1989). https://doi.org/10.1103/PhysRevC.39.1130

    Article  ADS  Google Scholar 

  10. A.L. Goodman, J.P. Vary, R.A. Sorensen, Phys. Rev. C 13, 1674–1697 (1976). https://doi.org/10.1103/PhysRevC.13.1674

    Article  ADS  Google Scholar 

  11. A.L. Goodman, Nucl. Phys. A 287, 1–12 (1977). https://doi.org/10.1016/0375-9474(77)90560-7

    Article  ADS  Google Scholar 

  12. N. Zeldes, T.S. Dumitrescu, H.S. Khler, Nucl. Phys. A 399, 11–50 (1983). https://doi.org/10.1016/0375-9474(83)90592-4

    Article  ADS  Google Scholar 

  13. J.E. García-Ramos, K. Heyde, Phys. Rev. C 100, 044315 (2019). https://doi.org/10.1103/PhysRevC.100.044315

    Article  ADS  Google Scholar 

  14. P.E. Garrett, M. Zielińska, E. Clément, Prog. Part. Nucl. Phys. 124, 103931 (2022). https://doi.org/10.1016/j.ppnp.2021.103931

  15. J.-P. Delaroche, M. Girod, J. Libert, H. Goutte, S. Hilaire, S. Péru, N. Pillet, G.F. Bertsch, Phys. Rev. C 81, 014303 (2010). https://doi.org/10.1103/PhysRevC.81.014303

    Article  ADS  Google Scholar 

  16. H. Mei, J. Xiang, J.M. Yao, Z.P. Li, J. Meng, Phys. Rev. C 85, 034321 (2012). https://doi.org/10.1103/PhysRevC.85.034321

    Article  ADS  Google Scholar 

  17. K. Sieja, F. Nowacki, K. Langanke, G. Martínez-Pinedo, Phys. Rev. C 79, 064310 (2009). https://doi.org/10.1103/PhysRevC.79.064310

    Article  ADS  Google Scholar 

  18. M. Honma, T. Mizusaki, T. Otsuka, Phys. Rev. Lett. 75, 1284–1287 (1995). https://doi.org/10.1103/PhysRevLett.75.1284

    Article  ADS  Google Scholar 

  19. T. Otsuka, M. Honma, T. Mizusaki, Phys. Rev. Lett. 81, 1588–1591 (1998). https://doi.org/10.1103/PhysRevLett.81.1588

    Article  ADS  Google Scholar 

  20. T. Togashi, Y. Tsunoda, T. Otsuka, Phys. Rev. Lett. 117, 172502 (2016). https://doi.org/10.1103/PhysRevLett.117.172502

    Article  ADS  Google Scholar 

  21. T. Otsuka, Y. Tsunoda, J. Phys. G: Nucl. Part. Phys. 43, 024009 (2016). https://doi.org/10.1088/0954-3899/43/2/024009

    Article  ADS  Google Scholar 

  22. K. Kawade, G. Battistuzzi, H. Lawin, H.A. Selic, K. Sistemich, F. Schussler, E. Monnand, J.A. Pinston, B. Pfeiffer, G. Jung, Z. Phys. A 304, 293 (1982). https://doi.org/10.1007/BF01421511

    Article  ADS  Google Scholar 

  23. F.K. Wohn, John C. Hill, C.B. Howard, K. Sistemich, R.F. Petry, R.L. Gill, H. Mach, A. Piotrowski, Phys. Rev. C 33, 677 (1986). https://doi.org/10.1103/PhysRevC.33.677

    Article  ADS  Google Scholar 

  24. F. Schussler, F. Schussler, J.A. Pinston, E. Monnand, A. Moussa, G. Jung, Nucl. Phys. A 339, 415–428 (1980). https://doi.org/10.1016/0375-9474(80)90024-X

    Article  ADS  Google Scholar 

  25. G. Jung, B. Pfeiffer, L.J. Alquist, H. Wollnik, P. Hungerford, S.M. Scott, W.D. Hamilton, Phys. Rev. C 22, 252 (1980). https://doi.org/10.1103/PhysRevC.22.252

    Article  ADS  Google Scholar 

  26. E. Clément et al., Phys. Rev. Lett. 116, 022701 (2016). https://doi.org/10.1103/PhysRevLett.116.022701

    Article  ADS  Google Scholar 

  27. E. Clément et al., Phys. Rev. C 94, 054326 (2016). https://doi.org/10.1103/PhysRevC.94.054326

    Article  ADS  Google Scholar 

  28. P. Singh et al., Phys. Rev. Lett. 121(19), 192501 (2018). https://doi.org/10.1103/PhysRevLett.121.192501

    Article  ADS  Google Scholar 

  29. R. Gilmore, D.H. Feng, Nucl. Phys. A 301, 189–204 (1978). https://doi.org/10.1016/0375-9474(78)90260-9

    Article  ADS  Google Scholar 

  30. P. Cejnar, J. Jolie, R.F. Casten, Rev. Mod. Phys. 82, 2155 (2010). https://doi.org/10.1103/RevModPhys.82.2155

    Article  ADS  Google Scholar 

  31. F. Iachello, A. Arima, The Interacting Boson Model (Cambridge University Press, Cambridge, 1987). https://doi.org/10.1017/CBO9780511895517

    Book  Google Scholar 

  32. P.D. Duval, B.R. Barrett, Phys. Lett. B 100, 223–227 (1981). https://doi.org/10.1016/0370-2693(81)90321-X

    Article  ADS  Google Scholar 

  33. P.D. Duval, B.R. Barrett, Nucl. Phys. A 376, 213–228 (1982). https://doi.org/10.1016/0375-9474(82)90061-6

    Article  ADS  Google Scholar 

  34. M. Sambataro, G. Molnár, Nucl. Phys. A 376, 201 (1982). https://doi.org/10.1016/0375-9474(82)90060-4

    Article  ADS  Google Scholar 

  35. P.D. Duval, D. Goutte, M. Vergnes, Phys. Lett. B 124, 297 (1983). https://doi.org/10.1016/0370-2693(83)91457-0

    Article  ADS  Google Scholar 

  36. A. Frank, P. Van Isacker, F. Iachello, Phys. Rev. C 73, 061302(R) (2006). https://doi.org/10.1103/PhysRevC.73.061302

    Article  ADS  Google Scholar 

  37. K. Nomura, R. Rodríguez-Guzmán, L.M. Robledo, Phys. Rev. C 94, 044314 (2016). https://doi.org/10.1103/PhysRevC.94.044314

    Article  ADS  Google Scholar 

  38. E. Padilla-Rodal, O. Castanos, R. Bijker, A. Galindo-Uribarri, Rev. Mex. Fis. 52, 57 (2006). https://www.scielo.org.mx/pdf/rmf/v52s1/v52s1a12.pdf

  39. R. Fossion, K. Heyde, G. Thiamova, P. Van Isacker, Phys. Rev. C 67, 024306 (2003). https://doi.org/10.1103/PhysRevC.67.024306

    Article  ADS  Google Scholar 

  40. J.E. García-Ramos, V. Hellemans, K. Heyde, Phys. Rev. C 84, 014331 (2011). https://doi.org/10.1103/PhysRevC.84.014331

    Article  ADS  Google Scholar 

  41. J.E. García-Ramos, K. Heyde, Phys. Rev. C 89, 014306 (2014). https://doi.org/10.1103/PhysRevC.89.014306

    Article  ADS  Google Scholar 

  42. J.E. García-Ramos, K. Heyde, L.M. Robledo, R. Rodriguez-Guzman, Phys. Rev. C 89, 034313 (2014). https://doi.org/10.1103/PhysRevC.89.034313

    Article  ADS  Google Scholar 

  43. J.E. García-Ramos, K. Heyde, Phys. Rev. C 92, 034309 (2015). https://doi.org/10.1103/PhysRevC.92.034309

    Article  ADS  Google Scholar 

  44. A. Leviatan, N. Gavrielov, J.E. García-Ramos, P. Van Isacker, Phys. Rev. C 98, 031302(R) (2018). https://doi.org/10.1103/PhysRevC.98.031302

    Article  ADS  Google Scholar 

  45. J.E. García-Ramos, K. Heyde, Phys. Rev. C 102, 054333 (2020). https://doi.org/10.1103/PhysRevC.102.054333

    Article  ADS  Google Scholar 

  46. N. Gavrielov, A. Leviatan, F. Iachello, Phys. Rev. C 99, 064324 (2019). https://doi.org/10.1103/PhysRevC.99.064324

    Article  ADS  Google Scholar 

  47. N. Gavrielov, A. Leviatan, F. Iachello, Phys. Rev. C 105, 014305 (2022). https://doi.org/10.1103/PhysRevC.105.014305

  48. A. Dewald, O. Möller, P. Petkov, Prog. Part. Nucl. Phys. 679, 786 (2012). https://doi.org/10.1016/j.ppnp.2012.03.003

    Article  ADS  Google Scholar 

  49. S. Akkoyun et al., Nucl. Instrum. Methods Phys. Res. A 668, 26 (2012). https://doi.org/10.1016/j.nima.2011.11.081

    Article  ADS  Google Scholar 

  50. E. Clément, C. Michelagnoli, G. de France, H.J. Li, A. Lemasson et al., Nucl. Instrum. Methods Phys. Res. A 855, 1–12 (2017). https://doi.org/10.1016/j.nima.2017.02.063

    Article  ADS  Google Scholar 

  51. M. Rejmund et al., Nucl. Instrum. Methods Phys. Res. A 646, 184–191 (2011). https://doi.org/10.1016/j.nima.2011.05.007

    Article  ADS  Google Scholar 

  52. P. Lehérissier, Rev. Sci. Instrum. 75, 1488 (2004). https://doi.org/10.1063/1.1690447

    Article  ADS  Google Scholar 

  53. R.Venturelli, D. Bazzacco, LNL Annual Report 2004, 220 (2005). https://www1.lnl.infn.it/~annrep/read_ar/2004/contrib_2004/pdfs/FAA122.pdf

  54. A. Lopez-Martens, K. Hauschild, A. Korichi, J. Roccaz, J.-P. Thibaud, Nucl. Instrum. Methods Phys. Res. Sect. A 533, 454–466 (2004). https://doi.org/10.1016/j.nima.2004.06.154

  55. J. Ljungvall, R.M. Pérez-Vidal, A. Lopez-Martens, C. Michelagnoli, E. Clément, J.Dudouet, A. Gadea, H. Hess, A. Korichi, M. Labiche, N. Lalović, H.J. Li, F. Recchia, The AGATA Collaboration, Nucl. Inst. Methods Phys. Res. A 955, 163297 (2020). https://doi.org/10.1016/j.nima.2019.163297

  56. T.W. Hagen et al., Phys. Rev. C 95, 034302 (2017). https://doi.org/10.1103/PhysRevC.95.034302

    Article  ADS  Google Scholar 

  57. Y.H. Kim, A. Lemasson, M. Rejmund et al., Eur. Phys. J. A 53, 162 (2017). https://doi.org/10.1140/epja/i2017-12353-y

    Article  ADS  Google Scholar 

  58. J. Ljungvall et al., Nucl. Instrum. Methods Phys. Res. A 679, 61–66 (2012). https://doi.org/10.1016/j.nima.2012.03.041

    Article  ADS  Google Scholar 

  59. B. Saha, Napatau or Tk-Lifetime-Analysis (unpublished)

  60. V. Karayonchev et al., PRC 102, 064314 (2020). https://doi.org/10.1103/PhysRevC.102.064314

    Article  ADS  Google Scholar 

  61. S. Ansari et al., Phys. Rev. C 96, 054323 (2017). https://doi.org/10.1103/PhysRevC.96.054323

    Article  ADS  Google Scholar 

  62. W. Witt et al., Phys. Rev. C 98, 041302(R) (2018). https://doi.org/10.1103/PhysRevC.98.041302

    Article  ADS  Google Scholar 

  63. L. Bettermann, J.-M. Régis, T. Materna, J. Jolie, U. Ks̈ter, K. Moschner, D. Radeck, Phys. Rev. C 82, 044310 (2010). https://doi.org/10.1103/PhysRevC.82.044310

    Article  ADS  Google Scholar 

  64. A.G. Smith, J.L. Durell, W.R. Phillips, W. Urban, P. Sarriguren, I. Ahmad, Phys. Rev. C 86, 014321 (2012). https://doi.org/10.1103/PhysRevC.86.014321

    Article  ADS  Google Scholar 

  65. A.G. Smith et al., Phys. Rev. Lett. 77, 1711 (1996). https://doi.org/10.1103/PhysRevLett.77.1711

    Article  ADS  Google Scholar 

  66. A.G. Smith et al., J. Phys. G: Nucl.: Part. Phys. 28, 2307 (2002). https://doi.org/10.1088/0954-3899/28/8/316

    Article  ADS  Google Scholar 

  67. H. Ohm, M. Liang, G. Molnár, K. Sistemich, Z. Phys. A-At. Nucl. 334, 519 (1989). https://doi.org/10.1007/BF01294762

    Article  ADS  Google Scholar 

  68. S. Raman, C.W. Nestor JR., P. Tikkanen, At. Data Nucl. Data Tables 78, 1–128 (2001). https://doi.org/10.1006/adnd.2001.0858

  69. F. Browne et al., Acta Phys. Pol. B 46, 721 (2015). https://www.actaphys.uj.edu.pl/R/46/3/721

  70. F. Browne et al., Phys. Lett. B 750, 448–452 (2015). https://doi.org/10.1016/j.physletb.2015.09.043

    Article  ADS  Google Scholar 

  71. S. Ansari, Shape Evolution in Neutron-Rich Zr, Mo and Ru Isotopes Around Mass A=100 (Université Paris-Saclay, 2019). https://tel.archives-ouvertes.fr/tel-02445759

  72. T.R. Rodríguez, J.L. Egido, Phys. Rev. C 81, 064323 (2010). https://doi.org/10.1103/PhysRevC.84.051307

    Article  ADS  Google Scholar 

  73. L.M. Robledo, T.R. Rodríguez, R.R. Rodríguez-Guzmán, J. Phys. G: Nucl. Part. Phys. 46, 013001 (2019). https://doi.org/10.1088/1361-6471/aadebd

    Article  ADS  Google Scholar 

  74. C.Y. Wu, H. Hua, D. Cline, A.B. Hayes, R. Teng, R.M. Clark, P. Fallon, A. Görgen, A.O. Macchiavelli, K. Vetter, Phys. Rev. C 70, 064312 (2004). https://doi.org/10.1103/PhysRevC.70.064312

    Article  ADS  Google Scholar 

  75. P.J. Nolan, J.F. Sharpey-Schafer, Rep. Prog. Phys. 42, 1 (1979). https://doi.org/10.1088/0034-4885/42/1/001

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the AGATA and VAMOS++ collaborations. We are grateful for the help from J. Goupil and the GANIL technical staff for their work in setting up the apparatuses and the good quality beam. The authors would also like to thank G. Fremont for preparing the target and degrader foils. G.P. and S.A. acknowledge M. Siciliano for the fruitful discussions and the help with lifetime analysis. This work has been partly funded (G.P.) by the P2IO LabEx (ANR-10-LABX-0038) in the framework Investissements d’Avenir (ANR-11-IDEX-0003-01) managed by the French Agence Nationale de la Recherche (ANR). The work of T.R.R. is supported by the Spanish MICINN under PRE2019-088036. T.R.R. gratefully thanks the support from the GSI-Darmstadt computing facility. A.G, J.S.H., V.M and L.G.P acknowledge the support of Norwegian Research Council, projects 240104, 263030, and 325714. Z.P gratefully thanks the support of STFC (UK). The work of P.-A.S. is supported by BMBF under grant NuSTAR.DA 05P15RDFN1, contract PN 23.21.01.06 sponsored by the Romanian Ministry of Research, Innovation and Digitalization. A.E, L.G., J.J., L.K. and J.-M.R. acknowledge the BMBF Verbundprojekt 05P2021 (ErUM-FSP T07) grant No. 05P21PKFN1. S.L. acknowledges funding from the European Union-NextGenerationEU, through the National Recovery and Resilience Plan of the Republic of Bulgaria, project No. BG-RRP-2.004-0008-C01. The work of A.M.B. and E.R.G. was financially supported by the Science and Technology Facility Council (STFC) Grant No. ST/L005840/1. M.S. has been supported by the OASIS project no. ANR-17-CE31-0026 and by he U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under contract number DE-AC02-06CH11357.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Pasqualato.

Additional information

Communicated by Navin Alahari.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pasqualato, G., Ansari, S., Heines, J.S. et al. Shape evolution in even-mass \(^{98-104}\)Zr isotopes via lifetime measurements using the \(\gamma \gamma \)-coincidence technique. Eur. Phys. J. A 59, 276 (2023). https://doi.org/10.1140/epja/s10050-023-01172-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-023-01172-8

Navigation