Skip to main content
Log in

Study of \(N=50\) gap evolution around \(Z=32\): new structure information for \({}^{82}\)Ge

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Medium spin states of light N = 50 isotones have been populated using fast neutron-induced fission of \({}^{232}\)Th. Online prompt \(\gamma \) spectroscopy has been performed using the hybrid \(\gamma \) spectrometer \(\nu \text {-}\)Ball coupled to the LICORNE directional neutron source at the ALTO facility of IJCLab. Medium spin states of the neutron-rich nucleus \({}^{82}\)Ge have been investigated using \(\gamma \)-\(\gamma \) and \(\gamma \)-\(\gamma \)-\(\gamma \) coincidence data to exploit the resolving power of \(\nu \text {-}\)Ball. Two new transitions were assigned to this nucleus and a new level was placed in the level scheme. We tentatively assigned to this new state a (\(7^{+}\)) spin-parity, which is interpreted as a new \(N=50\) core breaking state. This provides further insight into the energy evolution of the \(N=50\) shell gap toward \({}^{78}\)Ni.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: Raw data of the experiment is stored at the CC-IN2P3 of Lyon and can be made available on reasonable request to the authors.]

References

  1. Ch. Engelmann, F. Ameil, P. Armbruster, M. Bernas, S. Czajkowski, Ph. Dessagne, C. Donzaud, H. Geissel, A. Heinz, Z. Janas, C. Kozhuharov, Ch. Miehe, G. Munzenberg, M. Pfutzner, C. Rohl, W. Schwab, C. Stephan, K. Summerer, L. Tassan-Got, B. Voss, Production and identification of heavy Ni isotopes: evidence for the doubly magic nucleus \(^{78} _{28}\)Ni. Z. Phys. A 352, 351 (1995)

    Article  ADS  Google Scholar 

  2. R. Taniuchi, C. Santamaria, P. Doornenbal, A. Obertelli, K. Yoneda, G. Authelet, H. Baba, D. Calvet, F. Château, A. Corsi, A. Delbart, J.-M. Gheller, A. Gillibert, J.D. Holt, T. Isobe, V. Lapoux, M. Matsushita, J. Menéndez, S. Momiyama, T. Motobayashi, M. Niikura, F. Nowacki, K. Ogata, H. Otsu, T. Otsuka, C. Péron, S. Péru, A. Peyaud, E.C. Pollacco, A. Poves, J.-Y. Roussé, H. Sakurai, A. Schwenk, Y. Shiga, J. Simonis, S.R. Stroberg, S. Takeuchi, Y. Tsunoda, T. Uesaka, H. Wang, F. Browne, L.X. Chung, Z. Dombradi, S. Franchoo, F. Giacoppo, A. Gottardo, K. Hadyńska-Klęk, Z. Korkulu, S. Koyama, Y. Kubota, J. Lee, M. Lettmann, C. Louchart, R. Lozeva, K. Matsui, T. Miyazaki, S. Nishimura, L. Olivier, S. Ota, Z. Patel, E. Şahin, C. Shand, P.-A. Söderström, I. Stefan, D. Steppenbeck, T. Sumikama, D. Suzuki, Z. Vajta, V. Werner, J. Wu, Z.Y. Xu, \({}^{78}\)Ni revealed as a doubly magic stronghold against nuclear deformation. Nature 569(7754), 53–58 (2019)

    Article  ADS  Google Scholar 

  3. J. Hakala, S. Rahaman, V.-V. Elomaa, T. Eronen, U. Hager, A. Jokinen, A. Kankainen, I.D. Moore, H. Penttilä, S. Rinta-Antila, J. Rissanen, A. Saastamoinen, T. Sonoda, C. Weber, J. Äystö, Evolution of the N=50 Shell Gap Energy towards \(^{78}\rm Ni \). Phys. Rev. Lett. 101, 052502 (2008)

    Article  ADS  Google Scholar 

  4. S. Baruah, G. Audi, K. Blaum, M. Dworschak, S. George, C. Guénaut, U. Hager, F. Herfurth, A. Herlert, A. Kellerbauer, H.-J. Kluge, D. Lunney, H. Schatz, L. Schweikhard, C. Yazidjian, Mass measurements beyond the major \(r\)-process waiting point \(^{80}\rm Zn \). Phys. Rev. Lett. 101, 262501 (2008)

    Article  ADS  Google Scholar 

  5. Y. H. Zhang, Zs. Podolyàk, G. de Angelis, A. Gadea, C. Ur, S. Lunardi, N. Marginean, C. Rusu, R. Schwengner, Th. Kröll, D. R. Napoli, R. Menegazzo, D. Bazzacco, E. Farnea, S. Lenzi, T. Martinez, M. Axiotis, D. Tonev, W. Gelletly, S. Langdown, P. H. Regan, J. J. Valiente Dobon, W. von Oertzen, B. Rubio, B. Quintana, N. Medina, R. Broda, D. Bucurescu, M. Ionescu-Bujor, A. Iordachescu, Stability of the N=50 shell gap in the neutron-rich Rb, Br, Se, and Ge isotones. Phys. Rev. C, 70, 024301 (2004)

  6. A. Prévost, A. Astier, I. Deloncle, M.-G. Porquet, F. Azaiez, A. Buta, D. Curien, O. Dorvaux, G. Duchêne, B. J. P. Gall, F. Khalfallah, I. Piqueras, M. Rousseau, F. Ibrahim, S. Essabaa, M. Meyer, N. Redon, O. Stézowski, Ts. Venkova, R. Lucas, A. Bogachev, In-Beam \(\gamma \) ray spectroscopy of the N=50 isotones on the neutron-rich side. AIP Conf. Proc. 802(1), 279–282 (2005)

  7. T. Rząca-Urban, W. Urban, J.L. Durell, A.G. Smith, I. Ahmad, New excited states in \(^{82}\rm Ge \): possible weakening of the \(N=50\) closed shell. Phys. Rev. C 76, 027302 (2007)

    Article  ADS  Google Scholar 

  8. J.K. Hwang, J.H. Hamilton, A.V. Ramayya, N.T. Brewer, Y.X. Luo, J.O. Rasmussen, S.J. Zhu, Possible excited deformed rotational bands in \({}^{82}\)Ge. Phys. Rev. C 84, 024305 (2011)

    Article  ADS  Google Scholar 

  9. E. Sahin, G. de Angelis, G. Duchene, T. Faul, A. Gadea, A.F. Lisetskiy, D. Ackermann, A. Algora, S. Aydin, F. Azaiez, D. Bazzacco, G. Benzoni, M. Bostan, T. Byrski, I. Celikovic, R. Chapman, L. Corradi, S. Courtin, D. Curien, U. Datta Pramanik, F. Didierjean, O. Dorvaux, M.N. Erduran, S. Erturk, E. Farnea, E. Fioretto, G. de France, S. Franchoo, B. Gall, A. Gottardo, B. Guiot, F. Haas, F. Ibrahim, E. Ince, A. Khouaja, A. Kusoglu, G. La Rana, M. Labiche, D. Lebhertz, S. Lenzi, S. Leoni, S. Lunardi, P. Mason, D. Mengoni, C. Michelagnoli, V. Modamio, G. Montagnoli, D. Montanari, R. Moro, B. Mouginot, D.R. Napoli, D. O’Donnell, J.R.B. Oliveira, J. Ollier, R. Orlandi, G. Pollarolo, F. Recchia, J. Robin, M.-D. Salsac, F. Scarlassara, R.P. Singh, R. Silvestri, J.F. Smith, I. Stefan, A.M. Stefanini, K. Subotic, S. Szilner, D. Tonev, D.A. Torres, M. Trotta, P. Ujic, C. Ur, J.J. Valiente-Dobón, D. Verney, M. Yalcinkaya, P.T. Wady, K.T. Wiedemann, K. Zuber. Structure of the N=50 As, Ge, Ga nuclei. Nucl. Phys. A, 893, 1–12 (2012)

  10. J. Dudouet, A. Lemasson, G. Maquart, F. Nowacki, D. Verney, M. Rejmund, G. Duchêne, O. Stezowski, E. Clément, C. Michelagnoli, A. Korichi, C. Andreoiu, A. Astier, G. de Angelis, G. de France, C. Delafosse, I. Deloncle, F. Didierjean, Z. Dombradi, C. Ducoin, A. Gadea, A. Gottardo, D. Guinet, B. Jacquot, P. Jones, T. Konstantinopoulos, I. Kuti, F. Le Blanc, S.M. Lenzi, G. Li, R. Lozeva, B. Million, D.R. Napoli, A. Navin, R.M. Pérez-Vidal, C.M. Petrache, D. Ralet, M. Ramdhane, N. Redon, C. Schmitt, D. Sohler, Excitations of the magic N=50 neutron-core revealed in \(^{81}\rm Ga \). Phys. Rev. C 100, 011301 (2019)

    Article  ADS  Google Scholar 

  11. D. Verney, Etude de l’effet de couche N=50 en direction de \(^{78}\) Ni: contribution des études de radioactivité auprés du séparateur en ligne PARRNe (Université Paris-Sud XI, Manuscript de HDR, Institut de Physique Nucléaire d’Orsay, 2013)

  12. S. Leoni, C. Michelagnoli, J.N. Wilson, Gamma-ray spectroscopy of fission fragments with state-of-the-art techniques. La Riv. del Nuovo Cimento 45, 461–547 (2022)

    Article  ADS  Google Scholar 

  13. M. Lebois, N. Jovančević, D. Thisse, R. Canavan, D. Etasse, M. Rudigier, J.N. Wilson, The \(\nu \)-ball \(\gamma \)-spectrometer. Nucl. Instrum. Methods Phys. Res. Sect. A Acceler. Spectrom. Detect. Assoc. Equip. 960, 163580 (2020)

    Article  Google Scholar 

  14. M. Lebois, N. Jovančević, J.N. Wilson, D. Thisse, R. Canavan, M. Rudigier, The \(\nu \)- ball campaign at ALTO. Acta Phys. Polon. B 50, 425 (2019)

    Article  ADS  Google Scholar 

  15. GAMMAPOOL. http://gammapool.lnl.infn.it/index.html. Accessed 14 June 2023

  16. LOANPOOL. http://ipnwww.in2p3.fr/GePool/poolRules.html. Accessed 14 June 2023

  17. O.J. Roberts, A.M. Bruce, P.H. Regan, Z. Podolyák, C.M. Townsley, J.F. Smith, K.F. Mulholland, A. Smith, A LaBr 3: Ce fast-timing array for DESPEC at FAIR. Nucl. Instrum. Methods Phys. Res. Sect. A Acceler. Spectrom. Detect. Assoc. Equip. 748, 91–95 (2014)

    Article  Google Scholar 

  18. UKNDN. http://www.ukndn.ac.uk. Accessed 14 June 2023

  19. Fast Acquisition System for nuclEar Research. http://faster.in2p3.fr/. Accessed 14 June 2023

  20. M. Lebois, J.N. Wilson, P. Halipré, B. Leniau, I. Matea, A. Oberstedt, S. Oberstedt, D. Verney, Development of a kinematically focused neutron source with the p(\(^7\)Li, n)\(^7\) Be inverse reaction. Nucl. Instrum. Methods Phys. Res. Sect. A Acceler. Spectrom. Detect. Assoc. Equip. 735, 145–151 (2014)

  21. JENDL FP Fission Yields Data File 2011. https://wwwndc.jaea.go.jp/cgi-bin/FPYfig. Accessed 14 June 2023

  22. D. Thisse, Étude des états particule-trou dans les noyaux de la région du \(^{78}\) Ni avec le spectromètre \(\nu \)-Ball. Thèse de doctorat de l’Université Paris-Saclay (2021)

  23. J.K. Tuli, E. Browne, Data extracted using the NNDC On-Line Data Service from the ENSDF database, file revised as of March 2019. NDS 157, 260 (2019)

    ADS  Google Scholar 

  24. P. Hoff, B. Fogelberg, Properties of strongly neutron-rich isotopes of germanium and arsenic. Nucl. Phys. A 368(2), 210–236 (1981)

  25. D. Verney, D. Testov, F. Ibrahim, Yu. Penionzhkevich, B. Roussière, V. Smirnov, F. Didierjean, K. Flanagan, S. Franchoo, E. Kuznetsova, R. Li, B. Marsh, I. Matea, H. Pai, E. Sokol, I. Stefan, D. Suzuki, Pygmy Gamow–Teller resonance in the \(N=50\) region: new evidence from staggering of \(\beta \)-delayed neutron-emission probabilities. Phys. Rev. C 95, 054320 (2017)

    Article  ADS  Google Scholar 

  26. K. Heyde, J. Jolie, J. Moreau, J. Ryckebusch, M. Waroquier, J.L. Wood, A new prescription for determining particle-hole interactions near closed shells. Phys. Lett. B 176(3), 255–259 (1986)

    Article  ADS  Google Scholar 

  27. E. Glueckauf, Some observations concerning the energy of nuclei. Proc. Phys. Soc. 61, 25–33 (1947)

    Article  ADS  Google Scholar 

  28. K.A. Brueckner, Single-particle energy and effective mass and the binding energy of many-body systems. Phys. Rev. 110, 597–600 (1958)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. M.-G. Porquet, O. Sorlin, Evolution of the \(N=50\) gap from \(Z=30\) to \(Z=38\) and extrapolation toward \({}^{78}\)Ni. Phys. Rev. C 85, 014307 (2012)

    Article  ADS  Google Scholar 

  30. N. Zeldes, Nuclear energies and the shell model. Nucl. Phys. 7, 27–110 (1958)

    Article  MATH  Google Scholar 

  31. S.P. Pandya, Nucleon-hole interaction in \(\rm jj \) coupling. Phys. Rev. 103, 956–957 (1956)

    Article  ADS  Google Scholar 

  32. W.J. Huang, G. Audi, M. Wang, F.G. Kondev, S. Naimi, X. Xu, The AME2016 atomic mass evaluation (I). Evaluation of input data; and adjustment procedures. Chin. Phys. C 41(3), 030002 (2017)

    Article  ADS  Google Scholar 

  33. C. Delafosse, D. Verney, P. Marević , A. Gottardo, C. Michelagnoli, A. Lemasson, A. Goasduff, J. Ljungvall, E. Clément, A. Korichi, G. De Angelis, C. Andreoiu, M. Babo, A. Boso, F. Didierjean, J. Dudouet, S. Franchoo, A. Gadea, G. Georgiev, F. Ibrahim, B. Jacquot, T. Konstantinopoulos, S. M. Lenzi, G. Maquart, I. Matea, D. Mengoni, D. R. Napoli, T. Nikšć, L. Olivier, R. M. Pérez-Vidal, C. Portail, F. Recchia, N. Redon, M. Siciliano, I. Stefan, O. Stezowski, D. Vretenar, M. Zielinska, D. Barrientos, G. Benzoni, B. Birkenbach, A. J. Boston, H. C. Boston, B. Cederwall, L. Charles, M. Ciemala, J. Collado, D. M. Cullen, P. Désesquelles, G. de France, C. Domingo-Pardo, J. Eberth, V. González, L. J. Harkness-Brennan, H. Hess, D. S. Judson, A. Jungclaus, W. Korten, A. Lefevre, F. Legruel, R. Menegazzo, B. Million, J. Nyberg, B. Quintana, D. Ralet, P. Reiter, F. Saillant, E. Sanchis, Ch. Theisen, J. J. Valiente Dobon, Pseudospin symmetry and microscopic origin of shape coexistence in the \(^{78}\rm Ni\) region: a hint from lifetime measurements. Phys. Rev. Lett., 121, 192502 (2018)

Download references

Acknowledgements

We would like to thank the operators of the ALTO facility for providing us with reliable beams used in the experiments. We would like to express our profound gratitude to the FASTER collaboration for their strong technical support over the course of the campaign. We would like to acknowledge the support of the GAMMA-POOL and the LOANPOOL for the loan of the Clovers and Phase I germanium detectors. We also acknowledge the FATIMA collaboration for the loan of their LaBr\(_3\) crystals. G. Häfner and R. Lozeva acknowledge support from the IDEX-API grant. A. Blazhev, R.-B. Gerst and N. Warr are supported by the DFG under Grant No.BL 1513/1-1. The research leading to these results has received funding from the European Union’s HORIZON2020 Program under grant agreement No.654002. P.-A. Söderström, P. Koseoglou, J. Wiederhold, M. Rudigier, C. Henrich, I. Homm, C. Sürder and T. Kröll acknowledge the support from BMBF in Germany under grant NuSTAR.DA 05P15RDFN1. P.-A. Söderström acknowledges the contract PN 23 21 01 06 sponsored by the Romanian Ministry of Research, Innovation and Digitalization. A. Korgul acknowledges the Polish National Science Center under Grant No.2020/39/B/ST2/02346 that partially funded this work. L. Iskra acknolegdes the Polish National Science Centre, Poland, under research project No.2020/39/D/ST2/03510. This work is partially supported via the UK STFC UK Nuclear Data Network, UK STFC (grants ST/G000697/1, ST/P005314, ST/P003982/1 and ST/L005743/1) (PHR) and the University of Surrey Marion Redfearn Trust (RCL). P.-H. Regan, M. Bunce, A. Boso and P. Ivanov acknowledge support from the UK Department of Business, Energy and Industrial Strategy (BEIS) via the National Measurement System.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Thisse.

Additional information

Communicated by Wolfram Korten.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thisse, D., Lebois, M., Verney, D. et al. Study of \(N=50\) gap evolution around \(Z=32\): new structure information for \({}^{82}\)Ge. Eur. Phys. J. A 59, 153 (2023). https://doi.org/10.1140/epja/s10050-023-01051-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-023-01051-2

Navigation