Skip to main content
Log in

Scale dependence of the q and T parameters of the Tsallis distribution in the process of jet fragmentation

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The dependence of the q and T parameters of the Tsallis-distribution-shaped fragmentation function (FF) on the fragmentation scale (found to be equal to the jet mass) is calculated via the resummation of the branching process of jet fragmentation in the leading-log appriximation (LLA) in the \(\phi ^3\) theory. Jet and hadron spectra in electron-positron (\(e^+e^-\)) annihilations with 2- and 3-jet final states are calculated using virtual leading partons. It is found that jets, produced earlier in the branching process, are more energetic, and the energy, angle and multiplicity distributions of hadrons stemming from them are broader. It is also found that replacing the LL resummation in the branching process by a single splitting provides good approximation for the jet energy distribution in 2-jet events. Furthermore, a micro-canonical statistical event generator is presented for the event-by-event calculation of hadron momenta in \(e^+e^-\) annihilations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This is a theoretical study and no experimental data.]

References

  1. C. Bignamini, F. Becattini, F. Piccinini, Eur. Phys. J. C 72, 2176 (2012)

    ADS  Google Scholar 

  2. I. Bediaga, E.M.F. Curado, J. Miranda, Phys. A 286, 156 (2000)

    Google Scholar 

  3. C. Beck, Eur. Phys. J. A 40, 267–273 (2009)

    ADS  Google Scholar 

  4. G. Wilk, Z. Wlodarczyk, Eur. Phys. J. A 40, 299–312 (2009)

    ADS  Google Scholar 

  5. K. Urmossy, G.G. Barnafoldi, T.S. Biro, Phys. Lett. B 701, 111 (2011)

    ADS  Google Scholar 

  6. K. Urmossy, G.G. Barnafldi, T.S. Biro, Phys. Lett. B 718, 125 (2012)

    ADS  Google Scholar 

  7. K. Urmossy, Z. Xu, PoS DIS2016, 054, (2016) arXiv:1605.06876

  8. V.V. Begun, M. Gazdzicki, M.I. Gorenstein, Acta Phys. Polon. B 43, 1713 (2012)

    Google Scholar 

  9. V.V. Begun, M. Gazdzicki, M.I. Gorenstein, Phys. Rev. C 80, 064903 (2009)

    ADS  Google Scholar 

  10. V.V. Begun, M. Gazdzicki, M.I. Gorenstein, Phys. Rev. C 78, 024904 (2008)

    ADS  Google Scholar 

  11. Q. Wang, F.H. Liu, K.K. Olimov, Adv. High Energy Phys. 2021, 6677885 (2021)

    Google Scholar 

  12. K. Urmossy, Eur. Phys. J. A 53, 36 (2017). arXiv:1606.03208

    ADS  Google Scholar 

  13. T.A. Trainor, arXiv:2107.10899

  14. Z. Wlodarczyk, M. Rybczynski, New J. Phys. 22, 113002 (2020)

    Google Scholar 

  15. G. Biro et al., AIP Conf. Proc. 1853(1), 080001 (2017)

    Google Scholar 

  16. G. Biro et al., Entropy 19, 88 (2017). arXiv:1702.02842

    ADS  Google Scholar 

  17. A.S. Parvan, Eur. Phys. J. A 52, 355 (2016)

    ADS  Google Scholar 

  18. J. Cleymans, G.I. Lykasov, A.S. Parvan et al., Phys. Lett. B 723, 351–354 (2013)

    ADS  Google Scholar 

  19. L. Marques, J. Cleymans, A. Deppman, Phys. Rev. D 91, 054025 (2015)

    ADS  Google Scholar 

  20. I. Sena, A. Deppman, Eur. Phys. J. A 49, 17 (2013)

    ADS  Google Scholar 

  21. M. Waqas, G.X. Peng, F.H. Liu et al., Eur. Phys. J. Plus 137, 9, 1041 (2022)

    Google Scholar 

  22. J.B. Gu, C.Y. Li, Q. Wang et al., J. Phys. G Nucl. Part. Phys. 49, 115101 (2022)

    ADS  Google Scholar 

  23. T. Bhattacharyya, J. Cleymans, A. Khuntia et al., Eur. Phys. J. A 52, 2, 30 (2016). arXiv:1507.08434

    ADS  Google Scholar 

  24. K. Jiang, Y. Zhu, W. Liu et al., Phys. Rev. C 91, 2, 024910 (2015)

    Google Scholar 

  25. P.P. Yang, M.Y. Duan, F.H. Liu et al., Symmetry 2022 14, 1530 (2022)

    Google Scholar 

  26. Y. Su, X.L. Chen, Y.J. Sun et al., Nucl. Sci. Tech. 32, 108 (2021)

    Google Scholar 

  27. X.H. Zhang, F.H. Liu, K.K. Olimov, Int. J. Mod. Phys. E 30, 2150051 (2021)

    ADS  Google Scholar 

  28. P.P. Yang, M.Y. Duan, F.H. Liu, Eur. Phys. J. A 57, 2, 63 (2021)

    ADS  Google Scholar 

  29. S. Sharma, G. Chaudhary, K. Sandeep et al., Int. J. Mod. Phys. E 29, 04, 2050021 (2020)

    ADS  Google Scholar 

  30. B. De, G. Sau, S.K. Biswas et al., Int. J. Mod. Phys. A 25, 1239 (2010). arXiv:0911.1040

    ADS  Google Scholar 

  31. L. Liu, Z.B. Yin, L. Zheng, Chin. Phys. C 47(2), 024103 (2023)

    ADS  Google Scholar 

  32. G.R. Che, J.B. Gu, W.C. Zhang et al., J. Phys. G: Nucl. Part. Phys. 48, 095103 (2021)

    ADS  Google Scholar 

  33. J.Q. Tao, M. Wang, H. Zheng, A. Bonasera et al., J. Phys. G: Nucl. Part. Phys. 48, 105102 (2021)

    ADS  Google Scholar 

  34. Z. Tang, Y. Xu, L. Ruan et al., Phys. Rev. C 79, 051901 (2009). arXiv:0812.1609

    ADS  Google Scholar 

  35. J.Q. Tao, W.H. Wu, M. Wang et al., MDPI Particles 2022 5, 146 (2022)

    Google Scholar 

  36. L.L. Li, F.H. Liu, M. Waqas et al., Universe 8, 1, 31 (2022)

    ADS  Google Scholar 

  37. R.N. Patra, B. Mohanty, T.K. Nayak, Eur. Phys. J. Plus 136, 6, 702 (2021)

    Google Scholar 

  38. X.H. Zhang, Y.Q. Gao, F.H. Liu et al., Adv. High Energy Phys. 2022, 7499093 (2022)

    Google Scholar 

  39. M. Waqas, G.X. Peng, F.H. Liu et al., Eur. Phys. J. Plus 137, 9, 1026 (2022)

    Google Scholar 

  40. X.H. Zhang, F.H. Liu, K.K. Olimov et al., Adv. High Energy Phys. 2022, 5949610 (2022)

    Google Scholar 

  41. J. Chen, J. Deng, Z. Tang et al., Phys. Rev. C 104, 034901 (2021)

    ADS  Google Scholar 

  42. M. Waqas, G.X. Peng, R.Q. Wang et al., Eur. Phys. J. Plus 136, 10, 1082 (2021)

    Google Scholar 

  43. M. Waqas, G.X. Peng, F.H. Liu, J. Phys. G 48, 7, 075108 (2021)

    Google Scholar 

  44. M. Shao, L. Yi, Z. Tang et al., J. Phys. G 37, 085104 (2010). arXiv:0912.0993

    ADS  Google Scholar 

  45. K. Urmossy, T.S. Biro, Phys. Lett. B 689, 14 (2010). arXiv:0911.1411

    ADS  Google Scholar 

  46. L.L. Li, F.H. Liu, K.K. Olimov, Entropy 23, 478 (2021)

    ADS  Google Scholar 

  47. Q. Wang, F.H. Liu, Adv. High Energy Phys. 2020, 5031494 (2020)

    Google Scholar 

  48. M. Waqas, F.H. Liu, R.Q. Wang et al., Eur. Phys. J. A 56, 7, 188 (2020)

    ADS  Google Scholar 

  49. L. Qiao, G. Che, J. Gu et al., J. Phys. G: Nucl. Part. Phys. 47, 075101 (2020)

    ADS  Google Scholar 

  50. K. Urmossy, G. G. Barnafoldi, S. Harangozo et al., J. Phys. Conf. Ser. 805, (2017) 1, 012010, arXiv:1501.02352

  51. K. Urmossy, T.S. Biro, G.G. Barnafoldi et al., Proc. WPCF 2014, arXiv:1501.05959, arXiv:1405.3963

  52. T.S. Biro, G.G. Barnafoldi, P. Van et al., arXiv:1404.1256 (2014)

  53. Z. Tang, L. Yi, L. Ruan et al., Chin. Phys. Lett. 30, 031201 (2013). arXiv:1101.1912

    ADS  Google Scholar 

  54. Q. Zhang, Y.Q. Gao, F.H. Liu et al., Ann. Phys. 534, 2100567 (2022)

    Google Scholar 

  55. L.N. Gao, E.Q. Wang, Adv. High Energy Phys. 2021, 6660669 (2021)

    Google Scholar 

  56. Y.M. Tai, P.P. Yang, F.H. Liu, Adv. High Energy Phys. 2021, 8832892 (2021)

    Google Scholar 

  57. X.H. Zhang, F.H. Liu, Adv. High Energy Phys. 2021, 9548737 (2021)

    Google Scholar 

  58. A. Saha, S. Sanyal, Mod. Phys. Lett. A 36(22), 2150152 (2021)

  59. G.S. Pradhan, D. Sahu, S. Deb et al., arXiv:2106.14297

  60. M. Ishihara, arXiv:2104.11427

  61. J.D. Castano-Yepes, F.M. Paniagua, V. Munoz-Vitelly et al., Phys. Rev. D 106, 11, 116019 (2022)

    Google Scholar 

  62. E. Andrade, A. Deppman, E. Megias et al., Phys. Rev. D 101, 054022 (2020)

    ADS  MathSciNet  Google Scholar 

  63. P.H.G. Cardoso, T.N. da Silva, A. Deppman et al., Eur. Phys. J. A 53, 191 (2017)

    ADS  Google Scholar 

  64. E. Megias, M.J. Teixeira, V.S. Timoteo et al., arXiv:2203.11080

  65. Y.P. Zhao, Phys. Rev. D 101, 096006 (2020)

    ADS  MathSciNet  Google Scholar 

  66. J. Rozynek, G. Wilk, Eur. Phys. J. A 52, 1, 13 (2016)

    ADS  Google Scholar 

  67. T.S. Biro, A. Jakovac, Phys. Rev. Lett. 94, 132302 (2005)

    ADS  Google Scholar 

  68. A. Deppman, A.K. Golmankhaneh, E. Megias, R. Pasechnik, Phys. Lett. B 839, 137752 (2023)

    Google Scholar 

  69. C.Y. Wong, G. Wilk, Phys. Rev. D 87, 114007 (2013)

    ADS  Google Scholar 

  70. A. Deppman, E. Megias, D.P. Menezes, MDPI Phys. 2(3), 455–480 (2020)

    Google Scholar 

  71. A. Deppman, E. Megias, D.P. Menezes, Phys. Rev. D 101, 034019 (2020). (also for Referee 2)

    ADS  MathSciNet  Google Scholar 

  72. A. Deppman, E. Megias, D.P. Menezes et al., Entropy 20(9), 633 (2018)

    ADS  Google Scholar 

  73. A. Deppman, Phys. Rev. D 93, 054001 (2016)

    ADS  Google Scholar 

  74. Y.L. Dokshitzer, Sov. Phys. JETP 46, 641 (1977)

    ADS  Google Scholar 

  75. V. Gribov, L. Lipatov, Sov. J. Nucl. Phys. 15, 438 (1972)

    Google Scholar 

  76. G. Altarelli, G. Parisi, Nucl. Phys. B 126, 298 (1977)

    ADS  Google Scholar 

  77. M. Grazzini, Nucl. Phys. B 518, 303–315 (1998)

    ADS  Google Scholar 

  78. Y. Kazama, Y.P. Yao, Phys. Rev. D 19, 3111 (1979)

    ADS  Google Scholar 

  79. Y. Kazama, Y.P. Yao, Phys. Rev. D 19, 3121 (1979)

    ADS  Google Scholar 

  80. I. Feige, M.D. Schwartz, Phys. Rev. D 90, 105020 (2014). arXiv:1403.6472

    ADS  Google Scholar 

  81. J.C. Collins, T.C. Rogers, A.M. Stasto, Phys. Rev. D 77, 085009 (2008). arXiv:0708.2833

    ADS  Google Scholar 

  82. J. Collins, Phys. Rev. D 65, 094016 (2002). (hep-ph/0110113)

    ADS  Google Scholar 

  83. R. Perez-Ramos, D. Denterria, JHEP 08, 068 (2014)

    ADS  Google Scholar 

  84. OPAL Collab., Eur. Phys. J. C 40, 287–316 (2005)

    ADS  Google Scholar 

  85. ALEPH Collab., Eur. Phys. J. C 35, 457–486 (2004)

    ADS  Google Scholar 

  86. ATLAS Collab., JHEP 1205, 128 (2012)

    ADS  Google Scholar 

  87. ATLAS Collab., Phys. Rev. D 84, 054001 (2011)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karoly Urmossy.

Additional information

Communicated by Tamas Biro.

Appendices

6 Appendix

A Phasespace of n massless particles

$$\begin{aligned} \varOmega _n(P)= & {} \prod _{i=1}^n \int \frac{d^{D-1}\textbf{p}_i}{p_i^0}\, \delta ^{D}\left( \sum _j p_j^\mu -P^\mu \right) \nonumber \\\sim & {} \int d^Ds\, e^{-is_\mu P^\mu } \varphi ^n(s) , \end{aligned}$$
(40)

where the Fourier-transform of the single-particle phasespace \(\varphi (s)\) can be evaluated in the frame, in which, \(s = (\sigma ,{\textbf{0}})\) (with \(\sigma ^2 = s_0^2 - \textbf{s}^2\)), and \(p = (p,{\textbf{p}})\):

$$\begin{aligned} \varphi (\sigma )= & {} \int \frac{d^{D-1}\textbf{p}}{p^0}\, e^{is_\mu p^\mu } \nonumber \\\sim & {} \int dp\,p^{D-3} e^{i\sigma p} \sim \frac{1}{(i\sigma )^{D-2}} . \end{aligned}$$
(41)

We may evaluate the inverse Fourier-transform in Eq. (1) in the frame, where \(P = (M_0,{\textbf{0}})\), thus,

$$\begin{aligned} \varOmega _n(P)\sim & {} \int d^{D-1}\textbf{s} \nonumber \\{} & {} \int ds_0\, \frac{e^{-is_0 M_0} }{ [(s_0+|{\textbf{s}}|)(s_0-|{\textbf{s}}|)] ^{n(D-2)/2} }. \end{aligned}$$
(42)

As we have poles at \(s_0 = \pm |{\textbf{s}}|\), we use Cauchy’s formula \(\oint \frac{dzf(z)}{(z-z_0)^n}\sim f^{(n-1)}(z_0)\), and arrive at terms of the form of

$$\begin{aligned} \varOmega _n(P)\sim & {} \sum _j A^{\pm }_j \int d^{D-1}\textbf{s} \, \left( \frac{\partial }{\partial s_0}\right) ^j \nonumber \\{} & {} e^{-is_0 M_0} \left( \frac{\partial }{\partial s_0}\right) ^{n(D-2)/2-1-j}\nonumber \\{} & {} \left. \frac{1}{ (s_0\pm |{\textbf{s}}|) ^{n(D-2)/2} } \right| _{s_0=\pm |{\textbf{s}}|} \nonumber \\{} & {} \sim \sum _j A^{\pm }_j\, M_0^j \int ds\, s^{D-1 - n(D-2)+j} \nonumber \\{} & {} e^{-is M_0} \sim M_0^{n(D-2)-D} . \end{aligned}$$
(43)

The actual values of the constant factors \(A^{\pm }_j\) multiplying the terms coming from the poles at \(s_0 = \pm |{\textbf{s}}|\), are of no importance from the point of view of the particle distributions.

B Calculation of the splitting function

Via introducing the renormalized field and coupling \(g=Z_g g_r\) and \(\phi = Z_3^{1/2} \phi _r \), along with \(Z_3 = 1 + \delta Z_3\) and \(Z_g = 1 + \delta Z_g\), we arrive at the renormalised Lagrangian

$$\begin{aligned} \mathcal {L}= & {} \frac{1}{2}(\partial _\mu \phi _r)^2 + (Z_3-1)\frac{1}{2}(\partial _\mu \phi _r)^2 \nonumber \\{} & {} + \frac{g_r}{3!}\phi _r^3 + (Z_g Z_3^{3/2}-1)\frac{g_r}{3!}\phi _r^3\nonumber \\ {}= & {} \frac{1}{2}\left( \partial _\mu \phi _r\right) ^2 + \delta Z_3\frac{1}{2}\left( \partial _\mu \phi _r\right) ^2\nonumber \\{} & {} + \frac{g_r}{3!}\phi _r^3 + \left( \delta Z_g + \frac{3}{2}\delta Z_3 \right) \frac{g_r}{3!}\phi _r^3. \end{aligned}$$
(44)

As \(\delta Z_3\) and \(\delta Z_g\) are of \(\mathcal {O}(g^2)\), terms proportional to them come as perturbative corrections. This way, a propagator of momentum p is \(i/(p^2+i\epsilon )\), a vertex is \(-ig_r\), the counter terms are \(ip^2\delta Z_3\) and \(-ig_r(\delta Z_g+ \frac{3}{2}\delta Z_3)\), and a cut propagator is \(2\pi \delta (p^2)\). Propagators and vertices on the right of the cuts are complex conjugates.

We may write \(A(z,P^2) = \delta (1-z)A_1(z,P^2) + A_2(z,P^2)\) in Eq. (12). When calculating \(A_1(z,P^2)\), we use the identity

\(\prod \nolimits _i \dfrac{1}{A_i^{\alpha _i}} = \dfrac{\varGamma (\alpha )}{\prod \nolimits _i \varGamma (\alpha _i)} \prod \nolimits _i\int \nolimits _0^1 \dfrac{d\xi _i\,\xi _i^{\alpha _i-1} \delta (1-\alpha )}{(\sum \xi _i A_i)^\alpha }\), with \(\alpha = \sum \alpha _i\), thus,

$$\begin{aligned}{} & {} A_1(z,P^2) = \int \limits _0^1 d\xi _1 \int \frac{d^Dq}{(2\pi )^D}\nonumber \\{} & {} \quad \left\{ \int \limits _0^{1{-}\xi _1} d\xi _2 \frac{2i\,n_c}{\left[ (1{-}\xi _1{-}\xi _2)q^2 {+} \xi _1(q{-}{\hat{k}})^2 {+} \xi _2(P{-}q)^2\right] ^3} \right. \;\nonumber \\{} & {} \quad + \left. \frac{i\,n_d}{m_0^2\left[ (1-\xi _1)q^2 + \xi _1(q-{\hat{k}})^2\right] ^2} \right. \nonumber \\{} & {} \quad \left. + \frac{i\,n_e}{m_0^2 \left[ (1-\xi _1)q^2 + \xi _1 (P-q-{\hat{k}})^2\right] ^2} \right\} \nonumber \\{} & {} \quad + \frac{{\bar{n}}_c}{g^2} \left( \delta Z_g + \frac{3}{2}\delta Z_3\right) - \frac{{\bar{n}}_d + {\bar{n}}_e}{g^2}\delta Z_3 . \end{aligned}$$
(45)

Substituting \({\tilde{q}}=q - \xi _1k-\xi _2P\) and \(L_1 = -P^2\xi _2(1-\xi _2)\) in the first term, \({\tilde{q}} = q-\xi _1k\) in the second term and \({\tilde{q}} = q-\xi _1(P-k)\) in the third term, we get

$$\begin{aligned} g^2 A_1(z,P^2)= & {} i\,g^2 \int \limits _0^1 d\xi _1 \int \frac{d^D{\tilde{q}}}{(2\pi )^D} \nonumber \\{} & {} \left\{ \int \limits _0^{1-\xi _1} d\xi _2 \frac{2n_c}{({\tilde{q}}^2 - L_1)^3} \;+\; \frac{n_d + n_e}{m_0^2\, {\tilde{q}}^4} \right\} \nonumber \\{} & {} \quad +\; {\bar{n}}_c \left( \delta Z_g + \frac{3}{2}\delta Z_3\right) - ({\bar{n}}_d + {\bar{n}}_e)\delta Z_3 .\nonumber \\ \end{aligned}$$
(46)

Substituting \({\tilde{q}} = (iq_E,{\textbf{q}}_E)\) (Wick-rotation) gives

$$\begin{aligned} g^2A_1(z,P^2)= & {} g^2\frac{\kappa _D}{(2\pi )^D} \int \limits _0^1 d\xi _1 \int \limits _0^\infty dq_E\,q_E^{D-1} \nonumber \\{} & {} \left\{ \int \limits _0^{1-\xi _1} d\xi _2 \frac{2n_c}{( q^2_E + L_1)^3} \;-\; \frac{n_d + n_e}{m_0^2\, {\tilde{q}}_E^4}e^{-\epsilon q_E/m_0} \right\} \nonumber \\{} & {} + {\bar{n}}_c \left( \delta Z_g + \frac{3}{2}\delta Z_3\right) - ({\bar{n}}_d + {\bar{n}}_e)\delta Z_3 . \end{aligned}$$
(47)

Using \(\int \limits _0^\infty \dfrac{dx\,x^{a-1}}{(x+1)^{a+b}} = \varGamma (a)\varGamma (b)/\varGamma (a+b)\), \(\varGamma (\epsilon ) = 1/\epsilon -\gamma _E\) and setting \(D=6-2\epsilon \) along with \(g\rightarrow g\mu ^\epsilon \), we obtain

$$\begin{aligned} g^2A_1(z,P^2)= & {} \frac{g^2 n_c}{2 (4\pi )^3} \left( \frac{1}{\epsilon } - \ln \frac{-P^2}{\mu ^2} -\gamma _E + \ln 4\pi \right. \nonumber \\{} & {} \left. - 2\int \limits _0^1 d\xi _1 \int \limits _0^{1-\xi _1} d\xi _2 \ln \xi _2(1-\xi _2) \right) \;\nonumber \\ {}{} & {} - \frac{g^2 }{2 (4\pi )^3} (n_d + n_e)\frac{1}{\epsilon ^2} \nonumber \\{} & {} +\; {\bar{n}}_c \left( \delta Z_g + \frac{3}{2}\delta Z_3\right) - ({\bar{n}}_d + {\bar{n}}_e)\delta Z_3 .\nonumber \\ \end{aligned}$$
(48)

If we remove the divergences along with the \(P^2\) and \(\mu \) independent constants by the counter terms, we are left with

$$\begin{aligned} A_1(z,P^2) \;=\; -\frac{n_c }{2 (4\pi )^3} \ln \frac{P^2}{\mu ^2} \end{aligned}$$
(49)

For the calculation of the second line of \(A(z,P^2)\) in Eq. (12), we parametrize momenta as \(P=(M,0,{\textbf{0}})\), \(k=(Mz/2,Mz/2,{\textbf{0}})\) and \(q=\alpha P + \beta k + q_T = (\alpha M + \beta Mz/2,\beta Mz/2,{\textbf{q}}_T)\). This way, the integration measure becomes \(d^Dq = (M^2z/2)d\alpha \, d\beta \, d^{D-2}{\textbf{q}}_T\). Besides, \(2Pq = M^2(2\alpha + \beta z)\), \(2 k q = M^2\alpha z\) and \(q^2 = M^2\alpha (\alpha +\beta z)-{\textbf{q}}_T^2\). Furthermore, due to the \(\delta \left[ (q-k)^2\right] \) term, \(q^2 = 2k q = M^2\alpha z\). This way, the second line of Eq. (12) becomes

$$\begin{aligned} g^2A_2(z,P^2)= & {} g^2\frac{z \kappa _{D-2}}{4(2\pi )^{D+1}} \int d\alpha \int d\beta \nonumber \\{} & {} \int dq_T^2\,(q_T^2)^{D/2-2} \nonumber \\{} & {} \times \; (2\pi )\delta \left[ M^2\alpha (\alpha + \beta z - z)-q_T^2\right] (2\pi )\delta \nonumber \\{} & {} \left[ M^2(1+\alpha z - 2\alpha -\beta z)\right] \nonumber \\{} & {} \times \; \left\{ \frac{n_f}{\alpha ^2 z^2 } + \frac{n_g}{(1-z)^2} \right. \nonumber \\{} & {} \left. + \frac{n_h}{ \alpha z (1-z)} + \frac{n_i}{\alpha z (1-2\alpha +z-\beta z)} \right\} .\nonumber \\ \end{aligned}$$
(50)

Using the integral for \(\beta \) to eliminate the second \(\delta \) function gives

$$\begin{aligned} g^2 A_2(z,P^2)= & {} \frac{g^2\kappa _{D-2}}{4(2\pi )^{D-1} M^2} \int d\alpha \int dq_T^2\,(q_T^2)^{D/2-2}\delta \nonumber \\{} & {} \left[ M^2\alpha (1-\alpha )(1 - z)-q_T^2\right] \;\nonumber \\{} & {} \times \; \left\{ \frac{n_f}{\alpha ^2 z^2 } + \frac{n_g}{(1-z)^2} \right. \nonumber \\{} & {} \left. + \frac{n_h}{ \alpha z (1-z)} + \frac{n_i}{\alpha (1-\alpha )z^2} \right\} \nonumber \\= & {} \frac{g^2\kappa _{D-2} M^{D-6} (1-z)^{D/2-2}}{4(2\pi )^{D-1}} \nonumber \\{} & {} \int d\alpha \,[\alpha (1-\alpha )]^{D/2-2} \nonumber \\{} & {} \times \left\{ \frac{n_f}{\alpha ^2 z^2 } + \frac{n_g}{(1-z)^2} \right. \nonumber \\{} & {} \left. + \frac{n_h}{ \alpha z (1-z)} + \frac{n_i}{\alpha (1-\alpha )z^2} \right\} \end{aligned}$$
(51)

Using the identity \(\int \limits _0^1 d\alpha \alpha ^{a-1}(1-\alpha )^{b-1} = \varGamma (a)\varGamma (b)/\varGamma (a+b)\) and \(D=6-2\epsilon \) dimensions, where the coupling acquires dimension \(g\rightarrow g\mu ^\epsilon \), the solid angle is \(\kappa _D = 2\pi ^{D/2}/\varGamma (D/2)\) and \(\varGamma (-\epsilon )=-1/\epsilon -\gamma _E\), we obtain

$$\begin{aligned}{} & {} g^2 A_2(z,P^2) = \frac{g^2 (1-z)}{(4\pi )^3} \left( \frac{4\pi \mu }{M^2(1-z)} \right) ^\epsilon \nonumber \\{} & {} \quad \left\{ \frac{n_f}{z^2}\left( -\frac{1}{\epsilon }-\gamma _E \right) + \frac{n_g}{6(1-z)^2} + \frac{n_h}{2z (1-z)} + \frac{n_i}{z^2} \right\} \nonumber \\{} & {} \quad = \frac{g^2}{(4\pi )^3} \left\{ -\left[ \frac{1}{\epsilon }+\gamma _E + \ln \left( \frac{4\pi \mu }{M^2(1-z)} \right) \right] \frac{n_f(1-z)}{z^2 }\; \right. \nonumber \\{} & {} \quad + \left. \frac{n_g}{6(1-z)} + \frac{n_h}{2z} + \frac{n_i(1-z)}{z^2} \right\} . \end{aligned}$$
(52)

We made use of \(\varGamma (-1+\epsilon )=-1/\epsilon +\gamma _E-1\), \(\varGamma (-\epsilon )=-1/\epsilon -\gamma _E\). Note that the \(1/\epsilon \) term being the collinear divergence, cannot be eliminated via renormalisation, however, it drops out of the splitting function, which is

$$\begin{aligned} \varPi (z)= & {} \frac{\partial }{\partial \ln P^2}A(z,P^2) \nonumber \\= & {} \frac{n_f}{(4\pi )^3}\frac{1-z}{z^2} - \frac{n_c}{2 (4\pi )^3} \delta (1-z) . \end{aligned}$$
(53)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Urmossy, K., Jakovac, A. Scale dependence of the q and T parameters of the Tsallis distribution in the process of jet fragmentation. Eur. Phys. J. A 59, 122 (2023). https://doi.org/10.1140/epja/s10050-023-01041-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-023-01041-4

Navigation