Skip to main content
Log in

On cancellation of non-adiabatic and off-shell effects in the antiproton annihilation in deuteron

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

As known, some approximate approaches to the hadron scattering from nuclei work rather well far beyond the limits of their applicability. This was explained by cancellation of the contributions (non-adiabatic and off-shell effects) omitted in these approaches. Moreover, in some cases (in particular, for the reaction \({\bar{p}}d \rightarrow e^+e^-n\)) this cancellation allowed to derive rather simple analytical formula for the reaction amplitude. Solving the Faddeev equations, we confirm numerically this formula and, hence, the cancellations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The authors confirm that the data supporting the findings of this study are available within the article.]

Notes

  1. The Jost function (47) differs from Eq. (14.9) in chapter 14, ref. [17], by the complex conjugation.

References

  1. R.J. Glauber, Lectures in theoretical physics, in Interscience and in High Energy Physics and Nuclear Structure, vol. 1, ed. by W.E. Brittin, L.C. Dunham (Plenum Press, New York, 1959), pp.207–315

    Google Scholar 

  2. O.D. Dalkarov, V.A. Karmanov, Elastic and inelastic scattering of low energy antiprotons from \(^{12}C\) and \(^{16}O\) nuclei. Phys. Lett. B 147, 1–5 (1984)

    Article  ADS  Google Scholar 

  3. O.D. Dalkarov, V.A. Karmanov, Low energy antiprotons as a new probe of nuclear reaction mechanism. Nucl. Phys. A 478, 635–654 (1988)

    Article  ADS  Google Scholar 

  4. O.D. Dalkarov, V.A. Karmanov, Interaction of low energy antiprotons with nuclei. Phys. Elem. Part. At. Nucl. 18, 1399–1439 (1987)

    Google Scholar 

  5. V.M. Kolybasov, L.A. Kondratyuk, On the accuracy of Glauber approximation in intermediate energy region. Phys. Lett. B 39, 439–442 (1972)

    Article  ADS  Google Scholar 

  6. S.J. Wallace, High-energy expansion for nuclear multiple scattering. Phys. Rev. C 12, 179–193 (1975)

    Article  ADS  Google Scholar 

  7. V.M. Kolybasov, V.G. Ksenzov, Nonadiabatic effects in scattering from deuterons. ZhETF (USSR) 71, 13–23 (1976). (transl.: JETP 44, No. 1, 6-11 (1976))

    Google Scholar 

  8. G. Fäldt, Binding corrections and the pion-deuteron scattering length. Phys. Scr. 16, 81–86 (1977)

    Article  ADS  Google Scholar 

  9. G. Fäldt, T.E.O. Ericson, Binding effects in coherent \(\pi ^0\) photoproduction on deuterium. Phys. Lett. B 89, 173–176 (1980)

    Article  ADS  Google Scholar 

  10. S.A. Gurvitz, J.P. Dedonder, R.D. Amado, Optimal approximation to projectile-bound-nucleon scattering. Phys. Rev. C 19, 142–148 (1979)

    Article  ADS  Google Scholar 

  11. F. Cannata, S.A. Gurvitz, High energy scattering from a bound nucleon: unitarity and closure approximation. Phys. Rev. C 21, 2687–2690 (1980)

    Article  ADS  Google Scholar 

  12. O.D. Dalkarov, V.G. Ksenzov, On amplitude of production of the lepton pairs in annihilation of slow antiprotons on deuteron. Yad. Fiz. 33, 80–89 (1981). ([transl.: Sov. J. Nucl. Phys. 33(1), 41-46 (1981)])

    Google Scholar 

  13. O.D. Dalkarov, V.M. Kolybasov, V.G. Ksenzov, Nonadiabatic effects in nuclear reactions and the problem of determination of the proton electromagnetic form factor in the nonphysical region. Nucl. Phys. A 397, 498–519 (1983)

    Article  ADS  Google Scholar 

  14. R. Lazauskas, J. Carbonell, The Faddeev-Yakubovsky Simphony. Few-Body Syst. 60, 62 (2019)

    Article  ADS  Google Scholar 

  15. H. Fonvieille, V.A. Karmanov, Antiproton-nucleus electromagnetic annihilation as a way to access the proton timelike form factors. Eur. Phys. J. A 42, 287–298 (2009)

    Article  ADS  Google Scholar 

  16. S. Flügge, Practical Quantum Mechanics I (Springer-Verlag, Berlin, 1971)

    Book  MATH  Google Scholar 

  17. R.G. Newton, Scattering Theory of Waves and Particles, vol. 14 (McGraw-Hill book company, New York, 1966)

    Google Scholar 

  18. M. Goldberger, K. Watson, Collision Theory (John Wiley & Sons Inc, New-York, 1964)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to J. Carbonell and R. Lazauskas for useful recommendations on solving the Faddeev equations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Kupriyanova.

Additional information

Communicated by Alexandre Obertelli.

Appendices

Appendix A: Hulthen potential

For convenience, we will assume that both the proton and neutron and proton and antiproton interact by means of the Hulthen potential

$$\begin{aligned} V(r)=-V_0\frac{\exp (-\frac{r}{r_0})}{1-\exp (-\frac{r}{r_0})}=-\alpha \mu \frac{\exp (-\mu r)}{1-\exp (-\mu r)}, \end{aligned}$$
(39)

(\(V_0=\alpha \mu \), \(r_0 =1/\mu \leftrightarrow \alpha =V_0r_0\), \(\mu =1/r_0\)), with the same parameter \(r_0\), however, with different parameters \(V_0\). We assume that all these particles have equal masses m. The wave function for the S-wave in the coordinate space is represented as

$$\begin{aligned} \psi _k(r)=\frac{1}{\sqrt{4\pi }}\frac{\chi _k(r)}{r}. \end{aligned}$$

with

$$\begin{aligned} \chi (r)=N e^{-\kappa r}(1-e^{-\mu r}), \end{aligned}$$
(40)

where \(\kappa \!=\!\frac{1}{2}(\alpha m\!-\!\mu )\!=\!\sqrt{B_1m}\) and \( N\!=\!\sqrt{2\kappa (\kappa \!+\! \mu ) (2 \kappa \!+\! \mu )}/\mu . \) This wave function is normalized by Eq. (21).

The ground state binding energy for two particles of the equal masses m reads (see e.g. [16], Problem 68):

$$\begin{aligned} B_1=\vert E_1\vert =\frac{1}{4m}(\alpha m-\mu )^2. \end{aligned}$$
(41)

The bound state exists if \(\alpha m>\mu \). Everywhere m is not reduced mass, but mass of one of the particles.

For the Hulthen potential the Jost function \(f_{Jost}(k)\) is known in analytical form [17]:

$$\begin{aligned} f_{Jost}(k)= & {} \frac{\Gamma \left( 1 + 2iA\right) }{\Gamma \left( 1+iA - \sqrt{B^2-A^2}\right) } \nonumber \\{} & {} \times \frac{1}{\Gamma \left( 1+iA + \sqrt{B^2-A^2}\right) }. \end{aligned}$$
(42)

where we denoted:

$$\begin{aligned} A=\sqrt{mE} r_0=k r_0=\frac{k}{\mu },\, B^2=mV_0 r^2_0=\alpha \frac{m}{\mu }. \end{aligned}$$

\(\Gamma (z)\) is the gamma-function.

As well known:

$$\begin{aligned} \psi _{k}(r=0)=\frac{1}{f_{Jost}(-k)}. \end{aligned}$$
(43)

1.1 Appendix A.1: Deuteron and baryonium parameters

For the parameters \(\hbar =197.3\) MeV\(\cdot \)fm, \(m=938.3\) MeV, \(r_0=0.6061\) fm, \(\epsilon _d=-2.23\) MeV (deuteron), we find \(V_0=144.7\) MeV.

For the same parameters except for \(\epsilon _b=-15\) MeV (baryonium), we find \(V_0=195.3\) MeV.

For the same parameters except for \(\epsilon _b=-55\) MeV (baryonium), we find \(V_0=270.6\) MeV.

Appendix B: The exponential potential

In the exponential potential

$$\begin{aligned} V(r)=-V_0\exp \left( -\frac{r}{r_0}\right) \end{aligned}$$
(44)

like in the Hulthen one, there are explicit analytical solutions for the ground and scattering state wave functions, as well as the Jost function [17], Ch. 14.

The bound state wave function reads:

$$\begin{aligned} \chi (r)=AJ_{{\tilde{\nu }}}\left[ \alpha \exp \left( -\frac{r}{2r_0}\right) \right] , \end{aligned}$$
(45)

where \({\tilde{\nu }}=2r_0\sqrt{m\vert E\vert },\,\alpha =2r_0\sqrt{mV_0}\) and \(J_{{\tilde{\nu }}}\) is the Bessel function of the first kind.

The eigenvalue equation follows from \(\chi (0)=0\). It obtains the form

$$\begin{aligned} J_{2r_0\sqrt{m\vert E\vert }}\left( 2r_0\sqrt{mV_0}\right) =0 \end{aligned}$$
(46)

The Jost function f(k) readsFootnote 1 [18]:

$$\begin{aligned} f_{Jost}(k)= & {} \left( \frac{\alpha }{2}\right) ^{-\nu }J_{\nu }(\alpha )\Gamma (\nu +1) \nonumber \\= & {} \exp [-ir_0k\log (r_0^2mV_0)] \nonumber \\{} & {} \times J_{2ir_0k}\left( 2r_0\sqrt{mV_0}\right) \Gamma (2ir_0k+1). \end{aligned}$$
(47)

The value \(\psi _{k}(r=0)\) is given by Eq. (43). Therefore:

$$\begin{aligned} \psi _{k}(r=0)=\frac{\exp \left[ -ir_0k\log \left( r_0^2mV_0\right) \right] }{J_{-2ir_0k}\left( 2r_0\sqrt{mV_0}\right) \Gamma (-2ir_0k+1)}. \end{aligned}$$
(48)

1.1 Appendix B.1: Deuteron and baryonium wave functions

For the parameters \(\hbar =197.3\) MeV\(\cdot \!\)fm, \(m=938.3\) MeV, \(r_0=0.6061\) fm, \(\epsilon _d=-2.23\) MeV (deuteron), we find \(V_0=225.6\) MeV. The deuteron wave function obtains the form (r in fm, \(\chi (r)\) in \(fm^{-1/2}\)):

$$\begin{aligned} \chi _d(r)=0.7023J_{\nu }(y), \end{aligned}$$
(49)

where \(\nu =0.2810,\, y=2.826\exp (-0.8249r)\).

For the same parameters except for \(\epsilon _b=-15\) MeV (baryonium), we find \(V_0=338.4\) MeV. The baryonium wave function reads (r in fm, \(\chi (r)\) in \(fm^{-1/2}\)):

$$\begin{aligned} \chi _b(r)=1.175J_{\nu }(y), \end{aligned}$$
(50)

where \(\nu =0.7288,\, y=3.462\exp (-0.8249r)\).

Both wave functions are normalized to 1 by Eq. (21).

Appendix C: Three-body Jacobi coordinates and momenta

Three-body relative coordinates are defined as:

$$\begin{aligned} \vec {x}_3= & {} \vec {r}_1-\vec {r}_2,\quad \vec {y}_3=\frac{2}{\sqrt{3}}\left( \frac{\vec {r}_1+\vec {r}_2}{2}-\vec {r}_3\right) , \nonumber \\ \vec {R}= & {} \frac{\vec {r}_1+\vec {r}_2+\vec {r}_3}{3}. \end{aligned}$$
(51)

Two other sets of relative coordinates are obtained by cyclic permutation. In particular:

$$\begin{aligned} \vec {x}_1= & {} \vec {r}_2-\vec {r}_3,\quad \vec {y}_1=\frac{2}{\sqrt{3}}\left( \frac{\vec {r}_2+\vec {r}_3}{2}-\vec {r}_1\right) , \nonumber \\ \vec {R}= & {} \frac{\vec {r}_1+\vec {r}_2+\vec {r}_3}{3}. \end{aligned}$$
(52)

The set \(\vec {x}_3,\vec {y}_3\) is expressed via \(\vec {x}_1,\vec {y}_1\):

$$\begin{aligned} \vec {x}_3=-\frac{1}{2}(\vec {x}_1+\sqrt{3}\vec {y}_1), \quad \vec {y}_3=\frac{1}{2}(\sqrt{3}\vec {x}_1-\vec {y}_1). \end{aligned}$$
(53)

Inverse relations:

$$\begin{aligned} \vec {r}_1= & {} \vec {R}+\frac{1}{2}\vec {x}_3+\frac{1}{2\sqrt{3}}\vec {y}_3, \nonumber \\ \vec {r}_2= & {} \vec {R}-\frac{1}{2}\vec {x}_3+\frac{1}{2\sqrt{3}}\vec {y}_3,\quad \vec {r}_3=\vec {R}-\frac{1}{\sqrt{3}}\vec {y}_3. \end{aligned}$$
(54)

Substituting Eqs. (54) in the scalar product, we find:

$$\begin{aligned} \vec {k}_1\!\cdot \!\vec {r}_1+\vec {k}_2\!\cdot \!\vec {r}_2+\vec {k}_3\!\cdot \!\vec {r}_3= \vec {q}_3\!\cdot \!\vec {x}_3+\vec {p}_3\!\cdot \!\vec {y}_3+\vec {P}\!\cdot \!\vec {R}, \end{aligned}$$

where

$$\begin{aligned} \vec {q}_3= & {} \frac{1}{2}(\vec {k}_1-\vec {k}_2),\quad \vec {p}_3=\frac{1}{\sqrt{3}}\left( \frac{\vec {k}_1+\vec {k}_2}{2}-\vec {k}_3\right) , \nonumber \\ \vec {P}= & {} \vec {k}_1+\vec {k}_2+\vec {k}_3. \end{aligned}$$
(55)

and similarly for another set:

$$\begin{aligned} \vec {q}_1= & {} \frac{1}{2}(\vec {k}_2-\vec {k}_3),\quad \vec {p}_1=\frac{1}{\sqrt{3}}\left( \frac{\vec {k}_2+\vec {k}_3}{2}-\vec {k}_1\right) , \nonumber \\ \vec {P}= & {} \vec {k}_1+\vec {k}_2+\vec {k}_3. \end{aligned}$$
(56)

which provides:

$$\begin{aligned} \vec {k}_1\!\cdot \!\vec {r}_1+\vec {k}_2\!\cdot \!\vec {r}_2+\vec {k}_3\!\cdot \!\vec {r}_3= \vec {q}_1\!\cdot \!\vec {x}_1+\vec {p}_1\!\cdot \!\vec {y}_1+\vec {P}\!\cdot \!\vec {R}, \end{aligned}$$

We will use only these coordinates and momenta. We don’t use any other combinations called the “relative”  coordinates and momenta. However, we will also use the particle momenta themselves defined in the c.m. frame of reaction.

Let us express the Jacobi momenta \(\vec {p}_1\), \(\vec {p}_3\) through the c.m. ones. Let the particle 1 is the neutron and the particle 2 is the proton and the particle 3 is the antiproton. That is, in the c.m. frame: \(\vec {k}_1=\vec {p}_n, \,\vec {k}_2=\vec {p}_p\) and \(\vec {k}_3=\vec {p}_{{\bar{p}}}\). In these notations:

$$\begin{aligned} \vec {p}_1= & {} \frac{1}{\sqrt{3}}\left( \frac{\vec {p}_p+\vec {p}_{{\bar{p}}}}{2}-\vec {p}_n\right) , \nonumber \\ \vec {p}_3= & {} \frac{1}{\sqrt{3}}\left( \frac{\vec {p}_n+\vec {p}_p}{2}-\vec {p}_{{\bar{p}}}\right) . \end{aligned}$$
(57)

In the c.m. frame: \(\vec {p}_n+\vec {p}_p+\vec {p}_{{\bar{p}}}=0\rightarrow \vec {p}_p=-\vec {p}_n-\vec {p}_{{\bar{p}}}\). Therefore:

$$\begin{aligned} \vec {p}_1=-\frac{\sqrt{3}}{2}\vec {p}_n,\quad \vec {p}_3=-\frac{\sqrt{3}}{2}\vec {p}_{{\bar{p}}}. \end{aligned}$$
(58)

Appendix D: Test of unitarity

The fulfillment of unitarity provides very strong test of the solution of the Faddeev equations. We take the incident antiproton momentum which is not enough for the deuteron breakup. We will consider two cases: (i) the \({\bar{p}}p\) system has no bound states; (ii) the \({\bar{p}}p\) system has bound state (baryonium).

In the case (i), the \({\bar{p}}d\) scattering is elastic. Hence, the corresponding phase shift \(\delta \) is real. In this case, the test of unitarity is reduced to the test that \(\delta \) is real. The amplitude \(f_3(p_3)\) in Eq. (23) reads \(f_3(p_3)=\frac{1}{2i}(\exp (2i\delta )-1)\) (we use the definition of f without momentum \(p_3\) in the denominator). Then \(\exp (2i\delta )=1+2if_3(p_3)\). We will check that \(\vert \exp (2i\delta )\vert =1\), that is

$$\begin{aligned} \vert 1+2if_3(p_3)\vert =1. \end{aligned}$$
(59)

The results for \(p_{{\bar{p}}}=23.9,\, 48.3\) MeV/c are given in the Table 1.

Table 1 The amplitude \(f_3(p_{{\bar{p}}})\) for elastic \({\bar{p}}d\) scattering for \(V_{0{\bar{p}}p}=10\) MeV and \(r_0=0.6061\) fm

The last line of this table contains the values \(\vert \exp (2i\delta )\vert =\vert 1+2if_3(p_3)\vert \). We see that \(\vert \exp (2i\delta )\vert \approx 1\) with high accuracy. This proves that \(\delta \) is real, that confirms the validity of the numerical solution of the Faddeev equation.

In the case of open channel with the baryonium creation the value \(\vert \exp (2i\delta )\vert \) is smaller than 1. This indicates that the part of the final particles goes in this channel. Inclusion of this channel should restore the unitarity condition. This channel is taken into account below.

We deal now with the 6D space (two the 3D Jacobi coordinates \(\vec {X}=(\vec {x}_i,\vec {y}_i)\)). For \((\vec {x}_i,\vec {y}_i)\) one can chose any pair of the Jacobi coordinates. Unitarity means the conservation of flax:

$$\begin{aligned} \vec {j}=\frac{i\hbar }{2m}(\Psi \vec {\nabla }_{x_i}\Psi ^*-\Psi ^*\vec {\nabla }_{x_i}\Psi +\Psi \vec {\nabla }_{y_i}\Psi ^*-\Psi ^*\vec {\nabla }_{y_i}\Psi ),\nonumber \\ \end{aligned}$$
(60)

where \(\vec {\nabla }_{x_i}=\frac{\partial }{\partial \vec {x}_i}\), \(\vec {\nabla }_{y_i}=\frac{\partial }{\partial \vec {y}_i}\). The conservation of flax is expressed by the formula

$$\begin{aligned} \oint \vec {j} d\vec {S}=0, \end{aligned}$$
(61)

where \(d\vec {S}\) is element of surface in the 6D space. We integrate over the sphere of large radius \(\rho =\sqrt{\vec {x}^2+\vec {y}^2}\rightarrow \infty \), where the three-body wave function is known and is given by its asymptotic form. In this way, Eq. (61) provides a relation (the unitarity condition) between the amplitudes \(f_3,f_1\). It has the form:

$$\begin{aligned} \vert 1+2if_3(p_3)\vert ^2=1-\frac{4p_1}{p_3}\vert f_1(p_1)\vert ^2. \end{aligned}$$
(62)

If the rearrangement channel is closed, that is, \(f_1=0\), the equation (62) turns into (59).

Table 2 The amplitude \(f_3(p_{3})\) and \(f_1(p_{1})\) for \(\vert \epsilon _b\vert =55\) MeV, \(V_{0{\bar{p}}p}=270.6\) MeV and \(r_0=0.6061\) fm

In the last two lines of the Table 2 we see that the values \(\vert 1+2if_3(p_3)\vert ^2\) and \(1-\frac{4p_1}{p_3}\vert f_1(p_1)\vert ^2\) coincide with each other within the precision better than 0.1%.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dalkarov, O.D., Karmanov, V.A. & Kupriyanova, E.A. On cancellation of non-adiabatic and off-shell effects in the antiproton annihilation in deuteron. Eur. Phys. J. A 59, 124 (2023). https://doi.org/10.1140/epja/s10050-023-01035-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-023-01035-2

Navigation