Skip to main content
Log in

Photo-neutron cross-section of natGd in the bremsstrahlung end-point energies of 12–16 MeV and 60–70 MeV

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The spectrum-averaged cross-sections of natGd(γ, xn)159,153Gd reactions induced by the bremsstrahlung end-point energies of 12, 14, 16. 60, 65, and 70 MeV were measured by activation and off-line γ-ray spectrometric technique using the 20 MeV electron linac (ELBE) at HZDR, Dresden, Germany, and 100 MeV electron linac at Pohang Accelerator Laboratory, Korea. The TALYS 1.9 code was also used to calculate the theoretical natGd(γ, xn)159,153Gd reaction cross-sections as a function of photon energy. The spectrum-averaged values at various end-point energies were calculated from the literature data as well as theoretical values based on the TALYS 1.9 code, which is for mono-energetic photons. They were found to be in good agreement with the flux-weighted values of the current experimental data. It was also observed that the experimental and theoretical cross-sections increase from the threshold values to a certain energy, at which point another reaction channel opens, indicating the role of excitation energy. Individual reaction cross-sections decrease after a certain value as bremsstrahlung energy increases due to the opening of other reactions, indicating energy shearing among the different reaction channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

This manuscript has associated data in a data repository. [Authors’ comment: All data used in this paper are deposited in the EXFOR and TENDL data libray, and the data produced in this will be deposited in the EXFOR].

References

  1. S.F. Mughabghab, M. Divadeenam, N.E. Holden, Neutron Resonance and Thermal Cross Sections, vol. 1 (Academic Press, New York, 1981)

    Google Scholar 

  2. A. Nuttin, D. Heuer, A. Billebaud, R. Brissot, C. Le Brun, E. Liatard, J.M. Loiseaux, L. Mathieu, O. Meplan, E. Merle-Lucotte, H. Nifenecker, F. Perdu, S. David, Proc. Nucl. Energy 46, 77 (2005)

    Article  Google Scholar 

  3. T.R. Allen, D.C. Crawford, Sci. Technol. Nucl. Install. (2007) (article ID 97486)

  4. [ 4] F. Carminati, R. Klapisch, J.P. Revol, J.A. Rubio, C. Rubia, CERN/AT/93-49(ET) (1993)

  5. C. Rubia, J.A. Rubio, S. Buono, F. Carminati, N. Fietier, J. Galvez, C. Geles, Y. Kadi, R. Klapisch, P. Man-drilion, J.P. Revol, Ch. Roche, CERN/LHC/97-01(EET) (1997)

  6. Accelerator driven systems: energy generation and transmutation of nuclear waste, status report, IAEA, Vienna, IAEA-TECDO-985 (1997)

  7. C.D. Bowman, Annu. Rev. Nucl. Part. Sci. 48, 505 (1998)

    Article  ADS  Google Scholar 

  8. H. Aït Abderrahim, P. Kupschus, Y. Jongen, S. Ternier, MYRRHA, A multipurpose Accelerator Driven System for R&D, first step towards waste transmutation, DRAFT, Mol, Belgium, SCK•CEN, BLG 841 (2000)

  9. S. Ganesan, Pramana 68, 257 (2007)

    Article  ADS  Google Scholar 

  10. T. Mukhopadhyay, D. Basu, Eur. Phys. J. A. 45, 121 (2010)

    Article  ADS  Google Scholar 

  11. IAEA Hand book on photonuclear data for applications cross-sections and spectra. IAEA-TECDOC-1178. http://www-nds.iaea.org. Accessed 1 Mar 2019

  12. IAEA-EXFOR, experimental nuclear reaction data. http://www-nds.iaea.org/exfor. Accessed 1 Mar 2019

  13. B.L. Berman, M.A. Kelly, R.L. Bramblett, J.T. Caldwell, H.S. Davis, S.C. Fultz, Phys. Rev. 185, 1576 (1969)

    Article  ADS  Google Scholar 

  14. F. Dreyer, H. Dahmen, J. Staube, H.H. Thies, Nucl. Phys. A 192, 433 (1972)

    Article  ADS  Google Scholar 

  15. A.J. Koning, S. Hilaire, S.Goriely, TALYS-1.9, A nuclear reaction program. (2015) http://www.talys.eu/download-talys/. Accessed 1 Mar 2019

  16. R. Schwengner, R. Beyer, F. Donau, E. Gosse, A. Hartmann, A.R. Junghans, S. Mallian, G. Rusev, K.D. Schilling, W. Schulze, A. Wagner, Nuc. Inst. Meth. Phys. A555, 211 (2005)

    Article  ADS  Google Scholar 

  17. M. Erhard, A.R. Junghans, C. Nair, R. Schwengner, R. Beyer, J. Klug, K. Kosev, P. Wagner, Phys. Rev. C 81, 034319 (2010)

    Article  ADS  Google Scholar 

  18. H. Naik, G.N. Kim, R. Schwengner, K. Kim, M. Zaman, M. Tatari, M. Sahid, S.C. Yang, R. John, R. Massavczyk, A. Junghans, S.G. Shin, Y. Key, A. Wagner, M.W. Lee, A. Goswami, M.-H. Cho, Nucl. Phys. A. 916, 168 (2013)

    Article  ADS  Google Scholar 

  19. C.F. Weizsacker, Z. Phys. 88, 612 (1934)

    Article  ADS  Google Scholar 

  20. E.J. Williams, Phys. Rev. 45, 729 (1934)

    Article  ADS  Google Scholar 

  21. NuDat 2.6, National Nuclear Data Center, Brookhaven National Laboratory, updated 2011. http://www.nndc.bnl.gov/. Accessed 1 Mar 2019

  22. S.Y.F. Chu, L.P. Ekstrom and R.B. Firestone, The Lund/LBNL, Nuclear Data Search, Version 2.0, February 1999, WWW table of radioactive isotopes. http://nucleardata.nuclear.lu.se/toi/. Accessed 1 Mar 2019

  23. J.S. Hendricks, W.M. Gregg, L.F. Michael, R.J. Michael, C.J. Russell, W.D. Joe, P.F. Joshua, B.P. Denise, S.W. Laurie and W.M. William, MCNPX 2.6.0 Extensions, LANL Report LA-UR-08-2216, Los Alamos (2008) http://mcnpx.lanl.gov/. Accessed 1 Mar 2019

  24. S. Agostinelli et al., Nucl. Instrum. Methods A 506, 250 (2005)

    Article  ADS  Google Scholar 

  25. J. Allison et al., IEEE Trans. Nucl. Sci. 53, 270 (2006)

    Article  ADS  Google Scholar 

  26. B. Veyssiere, H. Beil, R. Bergere, P. Carlos, A. Lepretre, Nucl. Phys. A 159, 561 (1970)

    Article  ADS  Google Scholar 

  27. C. Fultz, R.L. Bramblett, J.T. Caldwell, N.A. Kerr, Phys. Rev. 127, 1273 (1962)

    Article  ADS  Google Scholar 

  28. K. Vogt, P. Mohr, M. Babilon, W. Bayer, D. Galaviz, T. Hartmann, C. Hutter, T. Rauscher, K. Sonnabend, S. Volz, A. Zilges, Nucl. Phys. A 707, 241 (2002)

    Article  ADS  Google Scholar 

  29. K.Y. Hara, H. Harada, F. Kitatani, S. Goko, S.Y. Hohara, T. Kaihori, A. Makinaga, H. Utsunomiya, H. Toyokawa, K. Yamada, J. Nucl. Sci. Technol. 44, 938 (2007)

    Article  Google Scholar 

  30. V.V. Varlamov, B.S. Ishkhanov, V.N. Orlin, SYu. Troshchiev, Izv. Rossiiskoi Akademii Nauk Ser. Fiz. 74, 884 (2010)

    Google Scholar 

  31. V. Di Napoli, A.M. Lacerenja, F. Salvetti, H.G. De Carvalho, J. Benuzzi Martins, Letter Al Nuvo Cimento 1, 835 (1971)

    Article  Google Scholar 

  32. Calculator and Graph Engine for Atomic Nuclei Parameters and Nuclear Reactions and Radioactive Decay Features, March 22, 2010. http://cdfe.sinp.msu.ru/. Accessed 1 Mar 2019

  33. A.J. Koning, D. Rochman, S.C. van der Marck, J. Kopecky, J. Ch. Sublet, M. Fleming, E. Bauge, S. Hilaire, P. Romain, B. Morillon, H. Duarte, S. C van der Marck, S. Pomp, H. Sjostrand, R. Forrest, H. Henriksson, O. Cabellos, S. Goriely, J. Leppanen, H. Leeb, A. Plompen and R. Mills, TENDL-2017, TALYS-based evaluated nuclear data library. https://tendl.web.psi.ch/tendl_2017/tendl2017.html. Accessed 1 Mar 2019

Download references

Acknowledgements

The authors would like to thank the staff of the electron LINAC (ELBE) at HZDR in Dresden, Germany, and PAL in Pohang, Korea for providing the electron beam used in the experiments. Dr. H. Naik, one of the authors, expressed gratitude to the BRAIN pool program of KOFEST, Korea, for inviting him as a visiting professor to the department of high-energy physics in Daegu, as well as providing financial support for his trip to Dresden, Germany, to carry out the experiment. This study was partially funded by the National Research Foundation of Korea (NRF) through a grant from the Korean Ministry of Education, Science, and Technology (NRF-2017R1D1A1B03030484, NRF-2018R1A6A1A06024970, and NRF-2019H1D3A2A01102637).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. N. Kim.

Additional information

Communicated by T. Nakamura.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naik, H., Kim, G.N., Schwengner, R. et al. Photo-neutron cross-section of natGd in the bremsstrahlung end-point energies of 12–16 MeV and 60–70 MeV. Eur. Phys. J. A 58, 92 (2022). https://doi.org/10.1140/epja/s10050-022-00736-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-022-00736-4

Navigation