Skip to main content
Log in

Microscopic calculations of \(^6\)He and \(^6\)Li with real-time evolution method

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The low-lying cluster states of \(^6\)He (\(\alpha \)+n+n) and \(^6\)Li (\(\alpha \)+n+p) are calculated by the real-time evolution method (REM) which generates basis wave functions for the generator coordinate method (GCM) from the equation of motion of Gaussian wave packets. The \(0^+\) state of \(^6\)He as well as the \(1^+\), \(0^+\) and \(3^+\) states of \(^6\)Li are calculated as a benchmark. We also calculate the root-mean-square (r.m.s.) radii of the point matter, the point proton, and the point neutron of these states, particularly for the study of the halo characters of these two nuclei. It is shown that REM can be one constructive way for generating effective basis wave functions in GCM calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The numerical data analyzed in this article are from the calculation depending on some model assumption.].

References

  1. D.M. Brink, in Proceedings of the International School of Physics Enrico Fermi, Course 36, Varenna edited by C. Bloch (Academic Press, New York, 1966)

  2. Y. Fujiwara, H. Horiuchi, K. Ikeda, M. Kamimura, K. Kato, Y. Suzuki, E. Uegaki, Prog. Theor. Phys. Suppl. 68, 29 (1980)

    Article  ADS  Google Scholar 

  3. A. Tohsaki, H. Horiuchi, P. Schuck, G. Roepke, Phys. Rev. Lett. 87, 192501 (2001)

    Article  ADS  Google Scholar 

  4. T. Kokalova, W.V.O.N. Itagaki, C. Wheldon, Phys. Rev. Lett. 96, 192502 (2006)

    Article  ADS  Google Scholar 

  5. H. Horiuchi, Nucl. Phys. A 522, 257 (1991)

    Article  ADS  Google Scholar 

  6. M. Ito, N. Itagaki, K. Ikeda, Phys. Rev. C 85, 014302 (2012)

    Article  ADS  Google Scholar 

  7. M. Lyu, Z. Ren, B. Zhou, Y. Funaki, H. Horiuchi, G. Roepke, P. Schuck, A. Tohsaki, C. Xu, T. Yamada, Phys. Rev. C 93, 054308 (2016)

    Article  ADS  Google Scholar 

  8. T. Suhara, Y. Kanada-En’yo, Phys. Rev. C 82, 044301 (2010)

    Article  ADS  Google Scholar 

  9. B. Zhou, Y. Funaki, H. Horiuchi, Z. Ren, G. Roepke, P. Schuck, A. Tohsaki, C. Xu, T. Yamada, Phys. Rev. Lett. 110, 262501 (2013)

    Article  ADS  Google Scholar 

  10. Y. Suzuki, K. Varga, in Stochastic Variable Approach to Quantum-Mechanical Few-Body Problem (Springer, Berlin, Heidelberg, 1998)

    Google Scholar 

  11. N. Itagaki, A. Kobayakawa, S. Aoyama, Phys. Rev. C 68, 054302 (2003)

    Article  ADS  Google Scholar 

  12. J. Mitroy, S. Bubin, W. Horiuchi, Y. Suzuki, L. Adamowicz, W. Cencek, K. Szalewicz, J. Komasa, D. Blume, K. Varga, Rev. Mod. Phys. 85, 693 (2013)

    Article  ADS  Google Scholar 

  13. Y. Fukuoka, S. Shinohara, Y. Funaki, T. Nakatsukasa, K. Yabana, Phys. Rev. C 88, 014321 (2013)

    Article  ADS  Google Scholar 

  14. R. Imai, T. Tada, M. Kimura, Phys. Rev. C 99, 064327 (2019)

    Article  ADS  Google Scholar 

  15. B. Zhou, M. Kimura, Q. Zhao, S. Shin, Eur. Phys. J. A 56, 298 (2020)

    Article  ADS  Google Scholar 

  16. S. Shin, B. Zhou, M. Kimura, arXiv:2012.14055 (2020)

  17. G.Q. Zhang, Y.G. Ma, X.G. Cao, C.L. Zhou, X.Z. Cai, D.Q. Fang, W.D. Tian, H.W. Wang, Phys. Rev. C 8, 034612 (2011)

    Article  ADS  Google Scholar 

  18. A. Ono, H. Horiuchi, Phys. Rev. C 53, 845 (1996)

    Article  ADS  Google Scholar 

  19. A. Ono, Prog. Part. Nucl. Phys. 105, 139 (2019)

    Article  ADS  Google Scholar 

  20. Y. Oganessian, V. Zagrebaev, J. Vaagen, Phys. Rev. Lett. 82, 4996 (1999)

    Article  ADS  Google Scholar 

  21. B. Danilin, I. Thompson, J. Vaagen, M. Zhukov, Nucl. Phys. A 632, 383 (1998)

    Article  ADS  Google Scholar 

  22. M. Zhukov, B. Danilin, D. Fedorov, J. Bang, I. Thompson, J. Vaagen, Phys. Rep. 231, 151 (1993)

    Article  ADS  Google Scholar 

  23. K. Arai, K. Kato, S. Aoyama, Phys. Rev. C 74, 034305 (2006)

    Article  ADS  Google Scholar 

  24. K. Arai, Y. Ogawa, Y. Suzuki, K. Varga, Prog. Theor. Phys. Suppl. 142, 97 (2001)

    Article  ADS  Google Scholar 

  25. K. Arai, Y. Suzuki, K. Varga, Phys. Rev. C 51, 2488 (1995)

    Article  ADS  Google Scholar 

  26. K. Hagino, H. Sagawa, P. Schuck, J. Phys. G: Nucl. Part. Phys. 37, 064040 (2010)

    Article  ADS  Google Scholar 

  27. K. Itonaga, H. Bando, Prog. Theor. Phys. 44, 1232 (1970)

    Article  ADS  Google Scholar 

  28. M. Matsuo, Phys. Rev. C 73, 044309 (2006)

    Article  ADS  Google Scholar 

  29. A. Volkov, Nucl. Phys. 7, 33 (1965)

    Article  Google Scholar 

  30. R. Tamagaki, Prog. Theor. Phys. 39, 91 (1968)

    Article  ADS  Google Scholar 

  31. N. Yamaguchi, T. Kasahara, S. Nagata, Y. Akaishi, Prog. Theor. Phys. 6, 1018 (1979)

    Article  ADS  Google Scholar 

  32. T. Furumoto, T. Suhara, N. Itagaki, Phys. Rev. C 97, 044602 (2018)

    Article  ADS  Google Scholar 

  33. D. Tilley, J. Kelley, J. Godwin, D. Millener, J. Purcell, C. Sheu, H. Weller, Nucl. Phys. A 745, 155 (2004)

    Article  ADS  Google Scholar 

  34. Z. Li, W. Liu, X. Bai, Y. Wang, G. Lian, Z. Li, S. Zeng, Phys. Lett. B 527(1), 50 (2002)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

One of the author (M.K.) acknowledges that this work was supported by the JSPS KAKENHI Grant No. 19K03859 and by the COREnet program at RCNP Osaka University. The ECT* Trento has supported this work and this infrastructure is part of a project that has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 824093.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q. Zhao.

Additional information

Communicated by David Blaschke.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Q., Zhou, B., Kimura, M. et al. Microscopic calculations of \(^6\)He and \(^6\)Li with real-time evolution method. Eur. Phys. J. A 58, 25 (2022). https://doi.org/10.1140/epja/s10050-021-00648-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-021-00648-9

Keywords

Navigation