Skip to main content
Log in

In-medium \(\Delta (1232)\) potential, pion production in heavy-ion collisions and the symmetry energy

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Using the dcQMD transport model, the isoscalar and isovector in-medium potentials of the \(\Delta \)(1232) baryon are studied and information regarding their effective strength is obtained from a comparison to experimental pion production data in heavy-ion collisions below 800 MeV/nucleon impact energy. The best description is achieved for an isoscalar potential moderately more attractive than the nucleon optical potential and a rather small isoscalar relative effective mass \(\hbox {m}^*_\Delta \approx \) 0.45. For the isovector component only a constraint between the potential’s strength at saturation and the isovector effective mass difference can be extracted, which depends on quantities such as the slope of the symmetry energy and the neutron-proton effective mass difference. These results are incompatible with the usual assumption, in transport models, that the \(\Delta \)(1232) and nucleon potentials are equal. The density dependence of symmetry energy can be studied using the high transverse momentum tail of pion multiplicity ratio spectra. Results are however correlated with the value of neutron-proton effective mass difference. This region of spectra is shown to be affected by uncertain model ingredients such as the pion potential or in-medium correction to inelastic scattering cross-sections at levels smaller than 10%. Extraction of precise constraints for the density dependence of symmetry energy above saturation will require experimental data for pion production in heavy-ion collisions below 800 MeV/nucleon impact energy and experimental values for the high transverse momentum tail of pion multiplicity ratio spectra accurate to better than 5%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The results of model calculations can be obtained directly from the corresponding author upon request.]

References

  1. B.A. Li, L.W. Chen, C.M. Ko, Phys. Rept. 464, 113 (2008). https://doi.org/10.1016/j.physrep.2008.04.005

    Article  ADS  Google Scholar 

  2. J.M. Lattimer, M. Prakash, Phys. Rept. 442, 109 (2007). https://doi.org/10.1016/j.physrep.2007.02.003

    Article  ADS  Google Scholar 

  3. M. Baldo, G.F. Burgio, Prog. Part. Nucl. Phys. 91, 203 (2016). https://doi.org/10.1016/j.ppnp.2016.06.006

    Article  ADS  Google Scholar 

  4. J.M. Lattimer, M. Prakash, Phys. Rept. 621, 127 (2016). https://doi.org/10.1016/j.physrep.2015.12.005

    Article  ADS  Google Scholar 

  5. L.W. Chen, C.M. Ko, B.A. Li, Phys. Rev. C 72, 064309 (2005). https://doi.org/10.1103/PhysRevC.72.064309

    Article  ADS  Google Scholar 

  6. L. Trippa, G. Colo, E. Vigezzi, Phys. Rev. C 77, 061304 (2008). https://doi.org/10.1103/PhysRevC.77.061304

    Article  ADS  Google Scholar 

  7. M.B. Tsang et al., Phys. Rev. C 86, 015803 (2012). https://doi.org/10.1103/PhysRevC.86.015803

    Article  ADS  Google Scholar 

  8. B.A. Brown, Phys. Rev. Lett. 111(23), 232502 (2013). https://doi.org/10.1103/PhysRevLett.111.232502

    Article  ADS  Google Scholar 

  9. Z. Zhang, L.W. Chen, Phys. Lett. B 726, 234 (2013). https://doi.org/10.1016/j.physletb.2013.08.002

    Article  ADS  Google Scholar 

  10. P. Danielewicz, J. Lee, Nucl. Phys. A 922, 1 (2014). https://doi.org/10.1016/j.nuclphysa.2013.11.005

    Article  ADS  Google Scholar 

  11. P. Morfouace et al., Phys. Lett. B 799, 135045 (2019). https://doi.org/10.1016/j.physletb.2019.135045

    Article  Google Scholar 

  12. T. Krüger, I. Tews, K. Hebeler, A. Schwenk, Phys. Rev. C 88, 025802 (2013). https://doi.org/10.1103/PhysRevC.88.025802

    Article  ADS  Google Scholar 

  13. C. Drischler, A. Carbone, K. Hebeler, A. Schwenk, Phys. Rev. C 94(5), 054307 (2016). https://doi.org/10.1103/PhysRevC.94.054307

    Article  ADS  Google Scholar 

  14. C. Drischler, K. Hebeler, A. Schwenk, Phys. Rev. C 93(5), 054314 (2016). https://doi.org/10.1103/PhysRevC.93.054314

    Article  ADS  Google Scholar 

  15. B. Abbott et al., Phys. Rev. Lett. 119(16), 161101 (2017). https://doi.org/10.1103/PhysRevLett.119.161101

    Article  ADS  Google Scholar 

  16. B. Abbott et al., Phys. Rev. Lett. 121(16), 161101 (2018). https://doi.org/10.1103/PhysRevLett.121.161101

    Article  ADS  Google Scholar 

  17. F. Fattoyev, J. Piekarewicz, C. Horowitz, Phys. Rev. Lett. 120(17), 172702 (2018). https://doi.org/10.1103/PhysRevLett.120.172702

    Article  ADS  Google Scholar 

  18. N.B. Zhang, B.A. Li, J. Phys. G 46(1), 014002 (2019). https://doi.org/10.1088/1361-6471/aaef54

    Article  ADS  Google Scholar 

  19. C. Drischler, R. Furnstahl, J. Melendez, D. Phillips, Phys. Rev. Lett. 125(20), 202702 (2020). https://doi.org/10.1103/PhysRevLett.125.202702

    Article  ADS  Google Scholar 

  20. G.C. Yong, B.A. Li, L.W. Chen, Phys. Lett. B 650, 344 (2007). https://doi.org/10.1016/j.physletb.2007.05.050

    Article  ADS  Google Scholar 

  21. B.A. Li, G.C. Yong, W. Zuo, Phys. Rev. C 71, 014608 (2005). https://doi.org/10.1103/PhysRevC.71.014608

    Article  ADS  Google Scholar 

  22. J. Hong, P. Danielewicz, Phys. Rev. C 90(2), 024605 (2014). https://doi.org/10.1103/PhysRevC.90.024605

    Article  ADS  Google Scholar 

  23. B.A. Li, Phys. Rev. Lett. 88, 192701 (2002). https://doi.org/10.1103/PhysRevLett.88.192701

    Article  ADS  Google Scholar 

  24. P. Russotto et al., Phys. Lett. B 697, 471 (2011). https://doi.org/10.1016/j.physletb.2011.02.033

    Article  ADS  Google Scholar 

  25. Y. Wang, C. Guo et al., Phys. Rev. C 89(4), 044603 (2014). https://doi.org/10.1103/PhysRevC.89.044603

    Article  ADS  Google Scholar 

  26. P. Russotto et al., Phys. Rev. C 94(3), 034608 (2016). https://doi.org/10.1103/PhysRevC.94.034608

    Article  ADS  Google Scholar 

  27. M.D. Cozma, Eur. Phys. J. A 54(3), 40 (2018). https://doi.org/10.1140/epja/i2018-12470-1

    Article  ADS  Google Scholar 

  28. Z. Xiao, B.A. Li et al., Phys. Rev. Lett. 102, 062502 (2009). https://doi.org/10.1103/PhysRevLett.102.062502

    Article  ADS  Google Scholar 

  29. Z.Q. Feng, G.M. Jin, Phys. Lett. B 683, 140 (2010). https://doi.org/10.1016/j.physletb.2009.12.006

    Article  ADS  Google Scholar 

  30. W.J. Xie, J. Su, L. Zhu et al., Phys. Lett. B 718, 1510 (2013). https://doi.org/10.1016/j.physletb.2012.12.021

    Article  ADS  Google Scholar 

  31. T. Song, C.M. Ko, Phys. Rev. C 91(1), 014901 (2015). https://doi.org/10.1103/PhysRevC.91.014901

    Article  ADS  Google Scholar 

  32. M.D. Cozma, Phys. Rev. C 95(1), 014601 (2017). https://doi.org/10.1103/PhysRevC.95.014601

    Article  ADS  Google Scholar 

  33. M.D. Cozma, Phys. Lett. B 753, 166 (2016). https://doi.org/10.1016/j.physletb.2015.12.015

    Article  ADS  Google Scholar 

  34. Z. Zhang, C.M. Ko, Phys. Rev. C 95(6), 064604 (2017). https://doi.org/10.1103/PhysRevC.95.064604

    Article  ADS  Google Scholar 

  35. Z. Zhang, C.M. Ko, Phys. Rev. C 97(1), 014610 (2018). https://doi.org/10.1103/PhysRevC.97.014610

    Article  ADS  Google Scholar 

  36. Z. Zhang, C.M. Ko, Phys. Rev. C 98(5), 054614 (2018). https://doi.org/10.1103/PhysRevC.98.054614

    Article  ADS  Google Scholar 

  37. N. Ikeno, A. Ono, Y. Nara, A. Ohnishi, Phys. Rev. C 93(4), 044612 (2016). https://doi.org/10.1103/PhysRevC.93.044612. [Erratum: Phys. Rev. C 97, 069902 (2018)]

  38. N. Ikeno, A. Ono, Y. Nara, A. Ohnishi, Phys. Rev. C 101(3), 034607 (2020). https://doi.org/10.1103/PhysRevC.101.034607

    Article  ADS  Google Scholar 

  39. Y. Cui, Y. Zhang, Z. Li, Chin. Phys. C 44(2), 024106 (2020). https://doi.org/10.1088/1674-1137/44/2/024106

    Article  ADS  Google Scholar 

  40. J. Xu et al., Phys. Rev. C 93(4), 044609 (2016). https://doi.org/10.1103/PhysRevC.93.044609

    Article  ADS  Google Scholar 

  41. Y.X. Zhang et al., Phys. Rev. C 97(3), 034625 (2018). https://doi.org/10.1103/PhysRevC.97.034625

    Article  ADS  Google Scholar 

  42. A. Ono et al., Phys. Rev. C 100(4), 044617 (2019). https://doi.org/10.1103/PhysRevC.100.044617

    Article  ADS  Google Scholar 

  43. W. Reisdorf et al., Nucl. Phys. A 848, 366 (2010). https://doi.org/10.1016/j.nuclphysa.2010.09.008

    Article  ADS  Google Scholar 

  44. G. Ferini, M. Colonna, T. Gaitanos, M. Di Toro, Nucl. Phys. A 762, 147 (2005). https://doi.org/10.1016/j.nuclphysa.2005.08.007

    Article  ADS  Google Scholar 

  45. G. Ferini, T. Gaitanos, M. Colonna, M. Di Toro, H. Wolter, Phys. Rev. Lett. 97, 202301 (2006). https://doi.org/10.1103/PhysRevLett.97.202301

    Article  ADS  Google Scholar 

  46. J. O’Connell, R. Sealock, Phys. Rev. C 42, 2290 (1990). https://doi.org/10.1103/PhysRevC.42.2290

  47. A. Bodek, T. Cai, Eur. Phys. J. C 80(7), 655 (2020). https://doi.org/10.1140/epjc/s10052-020-8236-8

    Article  ADS  Google Scholar 

  48. M. Hirata, F. Lenz, K. Yazaki, Annals Phys. 108, 116 (1977). https://doi.org/10.1016/0003-4916(77)90354-2

    Article  ADS  Google Scholar 

  49. Y. Horikawa, M. Thies, F. Lenz, Nucl. Phys. A 345, 386 (1980). https://doi.org/10.1016/0375-9474(80)90346-2

    Article  ADS  Google Scholar 

  50. E. Oset, L. Salcedo, Nucl. Phys. A 468, 631 (1987). https://doi.org/10.1016/0375-9474(87)90185-0

    Article  ADS  Google Scholar 

  51. C. Garcia-Recio, E. Oset, L. Salcedo, D. Strottman, M. Lopez, Nucl. Phys. A 526, 685 (1991). https://doi.org/10.1016/0375-9474(91)90438-C

    Article  ADS  Google Scholar 

  52. F. de Jong, R. Malfliet, Phys. Rev. C 46, 2567 (1992). https://doi.org/10.1103/PhysRevC.46.2567

    Article  ADS  Google Scholar 

  53. M. Baldo, L. Ferreira, Nucl. Phys. A 569, 645 (1994)

    Article  ADS  Google Scholar 

  54. A. Drago, A. Lavagno, G. Pagliara, D. Pigato, Phys. Rev. C 90(6), 065809 (2014). https://doi.org/10.1103/PhysRevC.90.065809

    Article  ADS  Google Scholar 

  55. B.J. Cai, B.A. Li, Phys. Rev. C 93(1), 014619 (2016). https://doi.org/10.1103/PhysRevC.93.014619

    Article  ADS  Google Scholar 

  56. Z.Y. Zhu, A. Li, J.N. Hu, H. Sagawa, Phys. Rev. C 94(4), 045803 (2016). https://doi.org/10.1103/PhysRevC.94.045803

    Article  ADS  Google Scholar 

  57. E. Kolomeitsev, K. Maslov, D. Voskresensky, Nucl. Phys. A 961, 106 (2017). https://doi.org/10.1016/j.nuclphysa.2017.02.004

    Article  ADS  Google Scholar 

  58. J.J. Li, A. Sedrakian, Astrophys. J. Lett. 874(2), L22 (2019). https://doi.org/10.3847/2041-8213/ab1090

    Article  ADS  Google Scholar 

  59. B.A. Li, Nucl. Phys. A 708, 365 (2002). https://doi.org/10.1016/S0375-9474(02)01018-7

    Article  ADS  Google Scholar 

  60. B.A. Li, X. Han, Phys. Lett. B 727, 276 (2013). https://doi.org/10.1016/j.physletb.2013.10.006

    Article  ADS  Google Scholar 

  61. X.H. Li, W.J. Guo, B.A. Li, L.W. Chen, F.J. Fattoyev, W.G. Newton, Phys. Lett. B 743, 408 (2015). https://doi.org/10.1016/j.physletb.2015.03.005

    Article  ADS  Google Scholar 

  62. Z. Zhang, L.W. Chen, Phys. Rev. C 93(3), 034335 (2016). https://doi.org/10.1103/PhysRevC.93.034335

    Article  ADS  Google Scholar 

  63. Z. Zhang, Y. Lim, J.W. Holt, C.M. Ko, Phys. Lett. B 777, 73 (2018). https://doi.org/10.1016/j.physletb.2017.12.012

    Article  ADS  Google Scholar 

  64. B.A. Li, B.J. Cai, L.W. Chen, J. Xu, Prog. Part. Nucl. Phys. 99, 29 (2018). https://doi.org/10.1016/j.ppnp.2018.01.001

    Article  ADS  Google Scholar 

  65. H.Y. Kong, J. Xu, L.W. Chen, B.A. Li, Y.G. Ma, Phys. Rev. C 95(3), 034324 (2017). https://doi.org/10.1103/PhysRevC.95.034324

    Article  ADS  Google Scholar 

  66. T. Malik, C. Mondal, B. Agrawal, J. De, S. Samaddar, Phys. Rev. C 98(6), 064316 (2018). https://doi.org/10.1103/PhysRevC.98.064316

    Article  ADS  Google Scholar 

  67. S.R. de Groot, L.G. Suttorp, Foundations of Electrodynamics (North-Holland, Amsterdam, 1972)

    Google Scholar 

  68. C. Hartnack, R.K. Puri, J. Aichelin, J. Konopka, S.A. Bass, H. Stöcker, W. Greiner, Eur. Phys. J. A 1, 151 (1998). https://doi.org/10.1007/s100500050045

    Article  ADS  Google Scholar 

  69. D.T. Khoa, N. Ohtsuka, M.A. Matin, A. Faessler, S.W. Huang, E. Lehmann, R.K. Puri, Nucl. Phys. A 548, 102 (1992). https://doi.org/10.1016/0375-9474(92)90079-Y

    Article  ADS  Google Scholar 

  70. V.S. Uma Maheswari, C. Fuchs, A. Faessler, L. Sehn, D.S. Kosov, Z. Wang, Nucl. Phys. A 628, 669 (1998). https://doi.org/10.1016/S0375-9474(97)00646-5

    Article  ADS  Google Scholar 

  71. C. Fuchs, A. Faessler, E. Zabrodin, Y.M. Zheng, Phys. Rev. Lett. 86, 1974 (2001). https://doi.org/10.1103/PhysRevLett.86.1974

    Article  ADS  Google Scholar 

  72. K. Shekhter, C. Fuchs, A. Faessler, M. Krivoruchenko, B. Martemyanov, Phys. Rev. C 68, 014904 (2003). https://doi.org/10.1103/PhysRevC.68.014904

    Article  ADS  Google Scholar 

  73. J. Aichelin, A. Bohnet, G. Peilert, H. Stoecker, W. Greiner, A. Rosenhauer, Phys. Rev. C 37, 2451 (1988). https://doi.org/10.1103/PhysRevC.37.2451

    Article  ADS  Google Scholar 

  74. A. Engel, A. Dutt-Mazumder, R. Shyam, U. Mosel, Nucl. Phys. A 603, 387 (1996). https://doi.org/10.1016/0375-9474(96)80008-F

  75. R. Shyam, U. Mosel, Phys. Lett. B 426, 1 (1998). https://doi.org/10.1016/S0370-2693(98)00297-4

    Article  ADS  Google Scholar 

  76. M. Effenberger, A. Hombach, S. Teis, U. Mosel, Nucl. Phys. A 613, 353 (1997). https://doi.org/10.1016/S0375-9474(96)00408-3

    Article  ADS  Google Scholar 

  77. G. Bertsch, S. Das Gupta, Phys. Rept. 160, 189 (1988). https://doi.org/10.1016/0370-1573(88)90170-6

    Article  ADS  Google Scholar 

  78. G.Q. Li, R. Machleidt, Phys. Rev. C 48, 1702 (1993). https://doi.org/10.1103/PhysRevC.48.1702

    Article  ADS  Google Scholar 

  79. G.Q. Li, R. Machleidt, Phys. Rev. C 49, 566 (1994). https://doi.org/10.1103/PhysRevC.49.566

    Article  ADS  Google Scholar 

  80. J. Cugnon, T. Mizutani, J. Vandermeulen, Nucl. Phys. A 352, 505 (1981). https://doi.org/10.1016/0375-9474(81)90427-9

    Article  ADS  Google Scholar 

  81. B. Barker, P. Danielewicz, Phys. Rev. C 99(3), 034607 (2019). https://doi.org/10.1103/PhysRevC.99.034607

    Article  ADS  Google Scholar 

  82. Z. Basrak, P. Eudes, V. de la Mota, Phys. Rev. C 93(5), 054609 (2016). https://doi.org/10.1103/PhysRevC.93.054609

    Article  ADS  Google Scholar 

  83. Y. Wang, C. Guo, Q. Li, H. Zhang, Z. Li, W. Trautmann, Phys. Rev. C 89(3), 034606 (2014). https://doi.org/10.1103/PhysRevC.89.034606

    Article  ADS  Google Scholar 

  84. Q. Li, C. Shen, C. Guo, Y. Wang, Z. Li, J. Łukasik, W. Trautmann, Phys. Rev. C 83, 044617 (2011). https://doi.org/10.1103/PhysRevC.83.044617

    Article  ADS  Google Scholar 

  85. S. Huber, J. Aichelin, Nucl. Phys. A 573, 587 (1994). https://doi.org/10.1016/0375-9474(94)90232-1

    Article  ADS  Google Scholar 

  86. A. Larionov, U. Mosel, Nucl. Phys. A 728, 135 (2003). https://doi.org/10.1016/j.nuclphysa.2003.08.005

    Article  ADS  Google Scholar 

  87. H.J. Schulze, A. Schnell et al., Phys. Rev. C 55, 3006 (1997). https://doi.org/10.1103/PhysRevC.55.3006

    Article  ADS  Google Scholar 

  88. D. Persram, C. Gale, Phys. Rev. C 65, 064611 (2002). https://doi.org/10.1103/PhysRevC.65.064611

    Article  ADS  Google Scholar 

  89. B.A. Li, L.W. Chen, Phys. Rev. C 72, 064611 (2005). https://doi.org/10.1103/PhysRevC.72.064611

    Article  ADS  Google Scholar 

  90. P. Danielewicz, G. Bertsch, Nucl. Phys. A 533, 712 (1991). https://doi.org/10.1016/0375-9474(91)90541-D

    Article  ADS  Google Scholar 

  91. J. Weil et al., Phys. Rev. C 94(5), 054905 (2016). https://doi.org/10.1103/PhysRevC.94.054905

    Article  ADS  Google Scholar 

  92. D. Manley, E. Saleski, Phys. Rev. D 45, 4002 (1992). https://doi.org/10.1103/PhysRevD.45.4002

    Article  ADS  Google Scholar 

  93. C.J. Batty, S.F. Biagi, E. Friedman, S. Hoath, J.D. Davies, G.J. Pyle, G.T.A. Squier, Phys. Rev. Lett. 40, 931 (1978). https://doi.org/10.1103/PhysRevLett.40.931

    Article  ADS  Google Scholar 

  94. C.B. Das, S.D. Gupta, C. Gale, B.A. Li, Phys. Rev. C 67, 034611 (2003). https://doi.org/10.1103/PhysRevC.67.034611

    Article  ADS  Google Scholar 

  95. J. Xu, L.W. Chen, B.A. Li, Phys. Rev. C 91(1), 014611 (2015). https://doi.org/10.1103/PhysRevC.91.014611

    Article  ADS  Google Scholar 

  96. W. Reisdorf et al., Nucl. Phys. A 876, 1 (2012). https://doi.org/10.1016/j.nuclphysa.2011.12.006

    Article  ADS  Google Scholar 

  97. R. Shane et al., Nucl. Instrum. Meth. A784, 513 (2015). https://doi.org/10.1016/j.nima.2015.01.026

    Article  ADS  Google Scholar 

  98. W. Ehehalt, W. Cassing, A. Engel, U. Mosel, G. Wolf, Phys. Rev. C 47, 2467 (1993). https://doi.org/10.1103/PhysRevC.47.R2467

    Article  ADS  Google Scholar 

  99. W. Reisdorf (FOPI Collaboration), personal communication (2015)

  100. H.l. Liu, G.C. Yong, D.H. Wen, Phys. Rev. C 91(4), 044609 (2015). https://doi.org/10.1103/PhysRevC.91.044609

  101. G.C. Yong, Y. Gao, G.F. Wei, Y.F. Guo, W. Zuo, J. Phys. G 46(10), 105105 (2019). https://doi.org/10.1088/1361-6471/ab3772

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the U.S. Department of Energy, USA under Grant Nos. DE-SC00145 30, US National Science Foundation, United States Grant No. PHY- 1565546. The research of M.D.C. has been financially supported in part by the Romanian Ministry of Education and Research through Contract No. PN 19 06 01 01/2019–2022. M.D.C. acknowledges the hospitality of NSCL / MSU where part of this study was performed. The authors express their gratitude to Maria Colonna, Pawel Danielewicz, Justin Estee, Che-Ming Ko, William Lynch, Hermann Wolter and TMEP Collaboration for stimulating discussions. The computing resources have been partly provided by the Institute for Cyber-Enabled Research (ICER) at Michigan State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. D. Cozma.

Additional information

Communicated by Ralf Rapp.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cozma, M.D., Tsang, M.B. In-medium \(\Delta (1232)\) potential, pion production in heavy-ion collisions and the symmetry energy. Eur. Phys. J. A 57, 309 (2021). https://doi.org/10.1140/epja/s10050-021-00616-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-021-00616-3

Navigation