Skip to main content
Log in

The density- and isospin-dependent Δ-formation cross section and its decay width

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

The energy-, density-, and isospin-dependent Δ-formation cross section σ*Nπ→Δ and Δ-decay width are calculated based on the relativistic BUU approach in which the effective mass splitting of nucleon and Δ baryons in isospin-asymmetric matter is considered by the inclusion of the δ meson exchange in the effective Lagrangian density and the density-dependent coupling constants of Hofmann et al. The results show that the σ*Nπ→Δ is decreased (increased) moderately with increasing density with (without) the consideration of medium modifications on pion mass. Meanwhile, if the invariant mass of the system is not far from the Δ pole mass, the Δ-decay width is also weakly dependent on density. The mass splitting effect of differently charged nucleon and Δ baryons on σ*Nπ→Δ is found to be more obvious than that of pion mesons but much weaker than the mass splitting in the hard Δ production channel NNNΔ. Further, the largest mass-splitting influence is seen in the πp → Δ0 and π+n → Δ+ channels but not in the production of Δ and Δ++ isobars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Xiao, B. A. Li, L. W. Chen, G. C. Yong, and M. Zhang, Phys. Rev. Lett. 102, 062502 (2009), arXiv: 0808.0186.

    Article  ADS  Google Scholar 

  2. Z. Q. Feng, and G. M. Jin, Phys. Lett. B 683, 140 (2010), arXiv: 0904.2990.

    Article  ADS  Google Scholar 

  3. W. Trautmann, M. Chartier, Y. Leifels, R. C. Lemmon, Q. Li, J. Lukasik, A. Pagano, P. Pawtowski, P. Russotto, and P. Wu, Prog. Parti-cle Nucl. Phys. 62, 425 (2009), arXiv: 0904.3495.

    Article  ADS  Google Scholar 

  4. P. Russotto, P. Z. Wu, M. Zoric, M. Chartier, Y. Leifels, R. C. Lemmon, Q. Li, J. Lukasik, A. Pagano, P. Pawtowski, and W. Trautmann, Phys. Lett. B 697, 471 (2011), arXiv: 1101.2361.

    Article  ADS  Google Scholar 

  5. J. Xu, L. W. Chen, M. Y. B. Tsang, H. Wolter, Y. X. Zhang, J. Aichelin, M. Colonna, D. Cozma, P. Danielewicz, Z. Q. Feng, A. Le Fevre, T. Gaitanos, C. Hartnack, K. Kim, Y. Kim, C. M. Ko, B. A. Li, Q. F. Li, Z. X. Li, P. Napolitani, A. Ono, M. Papa, T. Song, J. Su, J. L. Tian, N. Wang, Y. J. Wang, J. Weil, W. J. Xie, F. S. Zhang, and G. Q. Zhang, Phys. Rev. C 93, 044609 (2016), arXiv: 1603.08149.

    Article  ADS  Google Scholar 

  6. Y. X. Zhang, Y. J. Wang, M. Colonna, P. Danielewicz, A. Ono, M. B. Tsang, H. Wolter, J. Xu, L. W. Chen, D. Cozma, Z. Q. Feng, S. Das Gupta, N. Ikeno, C. M. Ko, B. A. Li, Q. F. Li, Z. X. Li, S. Mallik, Y. Nara, T. Ogawa, A. Ohnishi, D. Oliinychenko, M. Papa, H. Petersen, J. Su, T. Song, J. Weil, N. Wang, F. S. Zhang, and Z. Zhang, Phys. Rev. C 97, 034625 (2018), arXiv: 1711.05950.

    Article  ADS  Google Scholar 

  7. A. B. Larionov, W. Cassing, S. Leupold, and U. Mosel, Nucl. Phys. A 696, 747 (2001).

    Article  ADS  Google Scholar 

  8. V. Prassa, G. Ferini, T. Gaitanos, H. H. Wolter, G. A. Lalazissis, and M. Di Toro, Nucl. Phys. A 789, 311 (2007), arXiv: 0704.0554.

    Article  ADS  Google Scholar 

  9. T. Song, and C. M. Ko, Phys. Rev. C 91, 014901 (2015).

    Article  ADS  Google Scholar 

  10. Q. Li, and Z. Li, Phys. Lett. B 773, 557 (2017), arXiv: 1610.00827.

    Article  ADS  Google Scholar 

  11. G. Mao, Relativistic Microscopic Quantum Transport Equation (NOVA Science Publishers, New York, 2005).

    Google Scholar 

  12. Q. Li, Z. Li, and G. Mao, Phys. Rev. C 62, 014606 (2000).

    Article  ADS  Google Scholar 

  13. Q. Li, Z. Li, and E. Zhao, Phys. Rev. C 69, 017601 (2004).

    Article  ADS  Google Scholar 

  14. G. Mao, Z. Li, Y. Zhuo, Y. Han, and Z. Yu, Phys. Rev. C 49, 3137 (1994).

    Article  ADS  Google Scholar 

  15. P. C. Martin, and J. Schwinger, Phys. Rev. 115, 1342 (1959).

    Article  ADS  MathSciNet  Google Scholar 

  16. S. Bass, Prog. Particle Nucl. Phys. 41, 255 (1998).

    Article  ADS  Google Scholar 

  17. Z. Zhang, and C. M. Ko, Phys. Rev. C 95, 064604 (2017), arXiv: 1701.06682.

    Article  ADS  Google Scholar 

  18. W. Reisdorf, A. Andronic, R. Averbeck, M. L. Benabderrahmane, O. N. Hartmann, N. Herrmann, K. D. Hildenbrand, T. I. Kang, Y. J. Kim, M. Kis, P. Koczon, T. Kress, Y. Leifels, M. Merschmeyer, K. Piasecki, A. Schüttauf, M. Stockmeier, V. Barret, Z. Basrak, N. Bastid, R. Caplar, P. Crochet, P. Dupieux, M. Dzelalija, Z. Fodor, P. Gasik, Y. Grishkin, B. Hong, J. Kecskemeti, M. Kirejczyk, M. Korolija, R. Kotte, A. Lebedev, X. Lopez, T. Matulewicz, W. Neubert, M. Petrovici, F. Rami, M. S. Ryu, Z. Seres, B. Sikora, K. S. Sim, V. Simion, K. Siwek-Wilczyiiska, V. Smolyankin, G. Stoicea, Z. Tyminski, K. Wisniewski, D. Wohlfarth, Z. G. Xiao, H. S. Xu, I. Yushmanov, and A. Zhilin, Nucl. Phys. A 848, 366 (2010).

    Article  ADS  Google Scholar 

  19. G. Mao, L. Neise, H. Stöcker, and W. Greiner, Phys. Rev. C 59, 1674 (1999).

    Article  ADS  Google Scholar 

  20. K. A. Olive, Chin. Phys. C 38, 090001 (2014).

    Article  ADS  Google Scholar 

  21. J. Gegelia, U. G. Meißner, D. Siemens, and D. L. Yao, Phys. Lett. B 763, 1 (2016), arXiv: 1608.00517.

    Article  ADS  Google Scholar 

  22. N. Kaiser, and W. Weise, Phys. Lett. B 512, 283 (2001).

    Article  ADS  Google Scholar 

  23. F. Hofmann, C. M. Keil, and H. Lenske, Phys. Rev. C 64, 034314 (2001).

    Article  ADS  Google Scholar 

  24. G. E. Brown, and W. Weise, Phys. Rep. 22, 279 (1975).

    Article  ADS  Google Scholar 

  25. Q. Li, C. Shen, C. Guo, Y. Wang, Z. Li, J. Lukasik, and W. Trautmann, Phys. Rev. C 83, 044617 (2011).

    Article  ADS  Google Scholar 

  26. L. Y. Zou, M. Li, C. C. Guo, Y. J. Wang, Q. F. Li, and L. Liu, Sci. China-Phys. Mech. Astron. 59, 122011 (2016) Sci. China-Phys. Mech. Astron. 60, 022051 (2017).

    Article  Google Scholar 

  27. Y. S. Du, Y. J. Wang, Q. F. Li, and L. Liu, Sci. China-Phys. Mech. Astron. 61, 062011 (2018), arXiv: 1804.04294.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to QingFeng Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Li, Z. The density- and isospin-dependent Δ-formation cross section and its decay width. Sci. China Phys. Mech. Astron. 62, 972011 (2019). https://doi.org/10.1007/s11433-018-9336-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-018-9336-y

Keywords

Navigation