Skip to main content
Log in

Dynamical spectral structure of density fluctuation near the QCD critical point

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The expression for the dynamical spectral structure of the density fluctuation near the QCD critical point has been derived using linear response theory within the purview of Israel–Stewart relativistic viscous hydrodynamics. The change in the spectral structure of the system as it approaches the critical point has been studied. The effects of the critical point have been introduced in the system through a realistic equation of state and the scaling behaviour of various transport coefficients and thermodynamic response functions. We have found that the Rayleigh and Brillouin peaks are distinctly visible when the system is away from the critical point but the peaks tend to merge near the critical point. The sensitivity of the structure of the spectral function on wave vector (k) of the sound wave has been demonstrated. It has been shown that the Brillouin peaks get merged with the Rayleigh peak because of the absorption of sound waves in the vicinity of the critical point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The data that supports the findings of this study are available within the article.]

References

  1. N. Cabibbo, G. Parisi, Phys. Lett. B 59, 67 (1975)

    ADS  Google Scholar 

  2. J.C. Collins, M. Perry, Phys. Rev. Lett. 34, 1353 (1975)

    ADS  Google Scholar 

  3. K. Yagi, T. Hatsuda, Y. Miake, Quark Gluon Plasma (Cambridge University Press, Cambridge, 2005)

    Google Scholar 

  4. C.Y. Wong, Introduction to High-Energy Heavy Ion Collisions (World Scientific, Singapore, 1994)

    Google Scholar 

  5. M. Le Bellac, Thermal Field Theory (Cambridge University Press, Cambridge, 1996)

    Google Scholar 

  6. W. Busza, K. Rajagopal, W. van der Schee, Ann. Rev. Nucl. Part. Sci. 68, 339 (2018). arXiv:1802.04801 [hep-ph]

    ADS  Google Scholar 

  7. E.V. Shuryak, Phys. Rep. 61, 71–158 (1980)

    ADS  MathSciNet  Google Scholar 

  8. BRAHMS Collaboration: I. Arsene et al., Nucl. Phys. A 757, 1 (2005)

  9. PHOBOS Collaboration: B.B. Back et al., Nucl. Phys. A 757, 28 (2005)

  10. STAR Collaboration: J. Adams et al. Nucl. Phys. A 757, 102 (2005)

  11. PHENIX Collaboration: K. Adcox et al., Nucl. Phys. A 757, 184 (2005)

  12. Z. Fodor, S. Katz, JHEP 03, 014 (2002). arXiv:hep-lat/0106002 [hep-lat]

    ADS  Google Scholar 

  13. M. Asakawa, K. Yazaki, Nucl. Phys. A 504, 668 (1989)

    Google Scholar 

  14. A.M. Halasz, A. Jackson, R. Shrock, M.A. Stephanov, J. Verbaarschot, Phys. Rev. D 58, 096007 (1998). arXiv:hep-ph/9804290 [hep-ph]

    ADS  Google Scholar 

  15. P. de Forcrand, O. Philipsen, Nucl. Phys. B 642, 290 (2002). arXiv:hep-lat/0205016 [hep-lat]

    ADS  Google Scholar 

  16. Y. Aoki, G. Endrodi, Z. Fodor, S. Katz, K. Szabo, Nature 443, 675 (2006). arXiv:hep-lat/0611014 [hep-lat]

    ADS  Google Scholar 

  17. G. Endrodi, Z. Fodor, S. Katz, K. Szabo, JHEP 04, 001 (2011). arXiv:1102.1356 [hep-lat]

    ADS  Google Scholar 

  18. Z. Fodor, S. Katz, JHEP 04, 050 (2004). arXiv:hep-lat/0402006 [hep-lat]

    ADS  Google Scholar 

  19. R.V. Gavai, Pramana 84, 757 (2015). arXiv:1404.6615 [hep-ph]

    ADS  Google Scholar 

  20. A. Bhattacharyya, P. Deb, S.K. Ghosh, R. Ray, Phys. Rev. D 82, 014021 (2010)

    ADS  Google Scholar 

  21. A. Bhattacharyya, P. Deb, A. Lahiri, R. Ray, Phys. Rev. D 82, 114028 (2010)

    ADS  Google Scholar 

  22. A. Bhattacharyya, P. Deb, A. Lahiri, R. Ray, Phys. Rev. D 83, 014011 (2011)

    ADS  Google Scholar 

  23. B.J. Schaefer, J.M. Pawlowski, J. Wambach, Phys. Rev. D 76, 074023 (2007)

    ADS  Google Scholar 

  24. T.K. Herbst, J.M. Pawlowski, B.J. Schaefer, Phys. Lett. B 696, 58 (2011)

    ADS  Google Scholar 

  25. J. Wambach, B.J. Schaefer, M. Wagner, Acta Phys. Polon. Supp. 3, 691 (2010)

    Google Scholar 

  26. O. Dewolfe, S.S. Gubser, C. Rosen, Phys. Rev. D 83, 086005 (2011)

    ADS  Google Scholar 

  27. A. Bazavov, H.-T. Ding, P. Hegde, O. Kaczmarek, F. Karsch, E. Laermann, Y. Maezawa, H. Swagato Mukherjee, P. Ohno, H. Petreczky, P. Sandmeyer, C. Steinbrecher, S. Schmidt, W. Sharma, M. Wagner. Soeldner, Phys. Rev. D 95, 054504 (2017)

    ADS  Google Scholar 

  28. A. Andronic, P. Braun-Munzinger, K. Redlich, J. Stachel, Nature 561(7723), 321–330 (2018). https://doi.org/10.1038/s41586-018-0491-6. arXiv:1710.09425 [nucl-th]

    Article  ADS  Google Scholar 

  29. X. Luo, N. Xu, Nucl. Sci. Tech. 28(8), 112 (2017). https://doi.org/10.1007/s41365-017-0257-0. arXiv:1701.02105 [nucl-ex]

    Article  Google Scholar 

  30. M. Aggarwal et al. [STAR], arXiv:1007.2613 [nucl-e]

  31. M.A. Stephanov, K. Rajagopal, E.V. Shuryak, Phys. Rev. Lett. 81, 4816 (1998). arXiv:hep-ph/9806219 [hep-ph]

    ADS  Google Scholar 

  32. M.A. Stephanov, K. Rajagopal, E.V. Shuryak, Phys. Rev. D 60, 114028 (1999). arXiv:hep-ph/9903292 [hep-ph]

    ADS  Google Scholar 

  33. M.A. Stephanov, Phys. Rev. Lett. 102, 032301 (2009). arXiv:0809.3450 [hep-ph]

    ADS  Google Scholar 

  34. M.A. Stephanov, Phys. Rev. Lett. 107, 052301 (2011). arXiv:1104.1627 [hep-ph]

    ADS  Google Scholar 

  35. R. Critelli, J. Noronha, J. Noronha-Hostler, I. Portillo, C. Ratti, R. Rougemont, Phys. Rev. D 96, 096026 (2017)

    ADS  Google Scholar 

  36. T. Dore, J. Noronha-Hostler, E. McLaughlin, Phys. Rev. D 102, 074017 (2020)

    ADS  Google Scholar 

  37. B. Berdnikov, K. Rajagopal, Phys. Rev. D 61, 105017 (2000). arXiv:hep-ph/9912274 [hep-ph]

    ADS  Google Scholar 

  38. M. Stephanov, Y. Yin, Phys. Rev. D 98, 036006 (2018). arXiv:1712.10305 [nucl-th]

    ADS  MathSciNet  Google Scholar 

  39. M. Hasanujjaman, M. Rahaman, A. Bhattacharyya, J. Alam, Phys. Rev. C 102, 034910 (2020)

    ADS  Google Scholar 

  40. H.E. Stanley, Introduction to Phase Transitions and Critical Phenomena (Oxford University Press, Oxford, 1971)

    Google Scholar 

  41. L.E. Reichl, A Modern Course in Statistical Physics (Wiley, New York, 2016). https://doi.org/10.1002/9783527690497 ((ISBN: 978-3-527-41349-2))

  42. Y. Minami, T. Kunihiro, Prog. Theoret. Phys. 122, 881 (2009)

    ADS  Google Scholar 

  43. W. Israel, J.M. Stewart, Ann. Phys. 118, 341 (1979)

    ADS  Google Scholar 

  44. C. Nonaka, M. Asakawa, Phys. Rev. C 71, 044904 (2005)

    ADS  Google Scholar 

  45. P. Parotto, M. Bluhm, D. Mroczek, M. Nahrgang, J. Noronha-Hostler, K. Rajagopal, C. Ratti, T. Schafer, M. Stephanov, Phys. Rev. C 101, 034901 (2020)

    ADS  Google Scholar 

  46. R. Guida, J. Zinn-Justin, Nucl. Phys. B 489, 626 (1997)

    ADS  Google Scholar 

  47. W. Assawasunthonnet, https://dspace.mit.edu/handle/1721.1/51611

  48. L.M. Satarov, M.N. Dmitriev, I.N. Mishustin, arXiv:0901.1430v1

  49. J. Alam, S. Raha, B. Sinha, Phys. Rep. 273, 243 (1996)

    ADS  Google Scholar 

  50. E.W. Kolb, M.S. Turner, The Early Universe (Addison-Wesley Publishing Co., Boston, 1989)

    Google Scholar 

  51. A. Andronic, P. Braun-Munzinger, J. Stachel, M. Winn, Phys. Lett. B 718, 80 (2012)

    ADS  Google Scholar 

  52. G. Sarwar, S. Chatterjee, J. Alam, J. Phys. G 44, 055101 (2017)

    ADS  Google Scholar 

  53. S. Borsanyi, Z. Fodor, C. Hoelbling, S.D. Katz, S. Krieg, K.K. Szabo, Phys. Lett. B 730, 99–104 (2014). https://doi.org/10.1016/j.physletb.2014.01.007. arXiv:1309.5258 [hep-lat]

    Article  ADS  Google Scholar 

  54. S. Borsanyi, Z. Fodor, S.D. Katz, S. Krieg, C. Ratti, K. Szabo, JHEP 01, 138 (2012). https://doi.org/10.1007/JHEP01(2012)138. arXiv:1112.4416 [hep-lat]

    Article  ADS  Google Scholar 

  55. F.S. Bemfica, M.M. Disconzi, J. Noronha, Phys. Rev. D 98, 104064 (2018)

    ADS  MathSciNet  Google Scholar 

  56. F.S. Bemfica, M.M. Disconzi, J. Noronha, Phys. Rev. D 100, 104020 (2019)

    ADS  MathSciNet  Google Scholar 

  57. F.S. Bemfica, M.M. Disconzi, J. Noronha, arXiv:2009.11388 [gr-qc]

  58. P. Kovtun, JHEP 10, 034 (2019)

    ADS  Google Scholar 

  59. C. Eckart, Phys. Rev. 58, 919 (1940)

    ADS  Google Scholar 

  60. I. Muller, Z. Phys. 198, 329 (1967)

    ADS  Google Scholar 

  61. A. Das, W. Florkowski, J. Noronha, R. Ryblewski, Phys. Lett. B 806, 135525 (2020)

    MathSciNet  Google Scholar 

  62. A. Das, W. Florkowski, R. Ryblewski, Phys. Rev. D 102, 031501 (2020)

    ADS  Google Scholar 

  63. A. Das, W. Florkowski, R. Ryblewski, Phys. Rev. D 103, 014011 (2021)

    ADS  Google Scholar 

  64. L.D. Landau, E.M. Lifshitz, Fluid Mechanics (AddisonWesley, Boston, 1959)

    Google Scholar 

  65. W. A. Hiscock, L. Lindblom, Ann. Phys., 151 466 (1983), Phys. Rev. D 31, 725 (1985), Phys. Lett. A 131, 509 (1988)

  66. W.A. Hiscock, T.S. Olson, Phys. Lett. A 141, 125 (1989)

    ADS  Google Scholar 

  67. S. Pu, T. Koide, D.H. Rischke, Phys. Rev. D 81, 114039 (2010)

    ADS  Google Scholar 

  68. P. Van, P.S. Biro, Eur. Phys. J. Spec. Top. 155, 201 (2008)

    Google Scholar 

  69. R. Baier, P. Romatschke, D.T. Son, A.O. Starinets, M.A. Stephanov, J. High Energy Phys. 04, 100 (2008)

    ADS  Google Scholar 

  70. A. Muronga, Phys. Rev. C 76, 014909 (2007)

    ADS  Google Scholar 

  71. P. Romatchske, Int. J. Mod. Phys. E 19, 1 (2010)

    ADS  Google Scholar 

  72. S. Lahiri, Class. Quantum Grav. 37, 075010 (2020). arXiv:1908.09462

    ADS  Google Scholar 

  73. S. Grozdanov, P.K. Kovtun, A.O. Starinets et al., J. High Energy Phys. 97, 2019 (2019)

    Google Scholar 

  74. T. Csörgö, PoS CPOD2009 (2009) 035, [0911.5015 [nucl-th]

  75. J.I. Kapusta, J.M. Torres-Rincon, Phys. Rev. C 86, 054911 (2012)

    ADS  Google Scholar 

  76. K. Rajagopal, F. Wilczek, Nucl. Phys. B 399, 395 (1993)

    ADS  Google Scholar 

  77. J.C. Solana, E. Shuryak, D. Teaney, J. Phys. Conf. Ser. 27, 003 (2005)

    Google Scholar 

  78. F. Wang, Prog. Part. Nucl. Phys. 74, 35 (2014)

    ADS  Google Scholar 

  79. S. Cao, X.N. Wang, Rep. Prog. Phys. 84, 024301 (2021)

    ADS  Google Scholar 

  80. V. Koch, A. Majumder, X.N. Wang, Phys. Rev. Lett. 96, 172302 (2006)

    ADS  Google Scholar 

  81. STAR Collaboration: C. Adler et al., Phys. Rev. Lett. 90, 082302 (2003)

  82. B. Betz, arXiv:0910.4114

  83. B. Betz, J. Noronha, G. Torrieri, M. Gyulassy, D.H. Rischke, Phys. Rev. Lett. 105, 222301 (2010)

    ADS  Google Scholar 

  84. H. Li, F. Liu, G. Ma, X.N. Wang, Y. Zhu, Phys. Rev. Lett. 106, 012301 (2011)

    ADS  Google Scholar 

  85. R. Durrer, The Cosmic Microwave Background (Cambridge University Press, Cambridge, 2008)

    MATH  Google Scholar 

  86. M. Stephanov, Y. Yin, Phys. Rev. D 98, 036006 (2018)

    ADS  MathSciNet  Google Scholar 

  87. T.W.B. Kibble, Phys. Rep. 67, 183 (1980)

    ADS  MathSciNet  Google Scholar 

  88. W.H. Zurek, Nature 317, 505 (1985)

    ADS  Google Scholar 

  89. Y. Akamatsu, D. Teaney, F. Yan, Y. Yin, Phys. Rev. C 100, 044901 (2019)

    ADS  Google Scholar 

  90. T. Dore, J. Noronha-Hostler, E. McLaughlin, arXiv:2007.15083 [nucl-th]

  91. K. Rajagopal,F. Wilczek, https://doi.org/10.1142/9789812810458_0043. arXiv:hep-ph/0011333

  92. D.T. Son, M.A. Stephanov, Phys. Rev. D 70, 056001 (2004)

    ADS  Google Scholar 

  93. P.C. Hohenberg, B.I. Halperin, Rev. Mod. Phys. 49, 435 (1977)

    ADS  Google Scholar 

  94. J. Alam, S. Sarkar, P. Roy, T. Hatsuda, B. Sinha, Ann. Phys. 286, 159 (2001)

    ADS  Google Scholar 

  95. J.-F. Paquet et al., Phys. Rev. C 93, 044906 (2016)

    ADS  Google Scholar 

  96. S.K. Singh et al. to be published

Download references

Acknowledgements

M.R. is supported by Department of Atomic Energy (DAE), Govt. of India. The work of AB is supported by Alexander von Humboldt (AvH) foundation and Federal Ministry of Education and Research (Germany) through Research Group Linkage programme. AB also thanks Purnendu Chakraborty, Sourin Mukhopadhyay and Soumen Datta for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan-e Alam.

Additional information

Communicated by Laura Tolos

Appendix A

Appendix A

In this appendix, the expression for the dynamical spectral structure, \(\mathcal {S}_{nn}(\mathbf {k},\omega )\) derived by considering contributions up to second order in transport coefficients (i.e \(\eta ^{2},\zeta ^{2},\kappa ^{2},\eta \zeta , \eta \kappa ,\zeta \kappa \)) has been provided. The coupling and relaxation coefficients (\(\tilde{\alpha _{0}},\tilde{\alpha _{1}},\beta _{0},\tilde{\beta _{1}},\beta _{2}\)) have been taken non-zero in obtaining the results displayed in the text, but have been taken as zero in the following to avoid a more lengthy and complex expressions.

$$\begin{aligned} \mathcal {S^\prime }_{nn}(\mathbf {k},\omega )= & {} k^2 n_0 \Bigg [ \omega ^2 n_0 T^{2}\Big (\frac{{\partial s}}{{\partial T}}\Big )_n \Big \{h_0 \kappa T \omega + \Big (\frac{{\partial p}}{{\partial T}}\Big )_n k^2 \nonumber \\&\times \Big ( \zeta +\frac{4}{3} \eta \Big )-k^{2}T^{2} \kappa \omega ^2+h_{0}k T\kappa \nonumber \\&\times \Big (\frac{{\partial s}}{{\partial n}}\Big )_T +k^2T \kappa ( \zeta +\frac{4}{3}\eta )\nonumber \\&- T^{2} \Big (\frac{{\partial p}}{{\partial T}}\Big )_n^2\Big \}+k^2 T \kappa h_{0} \Big \{- h_0T \Big (\frac{{\partial p}}{{\partial T}}\Big )_n \nonumber \\&+k^2T \kappa (\zeta +\frac{4}{3} \eta )+T^{2} \Big (\frac{{\partial p}}{{\partial T}}\Big )_n^2\Big \}+n_0^{2}T^{2} \Big (\frac{{\partial s}}{{\partial T}}\Big )_n \nonumber \\&\times \Big (\frac{{\partial s}}{{\partial n}}\Big )_T \Big \{\Big (\frac{{\partial p}}{{\partial T}}\Big )_n k ( \zeta +\frac{4}{3} \eta )+T^{3} \kappa \omega ^2 \nonumber \\&- h_0T \kappa \Big \}+k^4 n_{0} h_{0} (\zeta +\frac{4}{3} \eta )^{2}h_{0}\Big (\frac{{\partial p}}{{\partial n}}\Big )_T \nonumber \\&\times \Big \{n_0 T^2 \omega ^{2} \Big (k^2 (\zeta +\frac{4}{3} \eta )+ \kappa T \omega ^2- k^2 T\kappa \Big ) \Big \}\nonumber \\&+ h_{0}^{2} \kappa T^{2} k^{2} \Big (\frac{{\partial p}}{{\partial T}}\Big )_n- n_0h_{0} \kappa T^{3} k^{2}\omega ^2 \Big (\frac{{\partial s}}{{\partial n}}\Big )_T\Bigg ] \nonumber \\&\Bigg / \Bigg [ h_0^2 \Big \{ k^4 T^{2}\kappa ^2 \omega ^4+n_0^2 T^2 \omega ^4\Big (\frac{{\partial s}}{{\partial T}}\Big )_n\Big \}\nonumber \\&+h_0 k^2 \omega ^2 \kappa ^2T^{4} \Big (\frac{{\partial s}}{{\partial T}}\Big )_n \times \Big \{ \omega ^4 -2n_{0} \Big (\frac{{\partial p}}{{\partial n}}\Big )_T\Big \}\nonumber \\&-2 k^2 n_0^2 T^{4} \kappa ^2 \omega ^2\Big ( \frac{{\partial s}}{{\partial T}}\Big )_n^{2}-2n_{0}h_{0}k^2 T^{4} \kappa ^2 \omega ^2 \nonumber \\&\Big (\frac{{\partial p}}{{\partial T}}\Big )_n-2n_0^3 T^2k^{4} \omega ^2 \Big (\frac{{\partial s}}{{\partial T}}\Big )_n\times \Big \{\Big (\frac{{\partial p}}{{\partial T}}\Big )_n\nonumber \\&\times \Big (\frac{{\partial s}}{{\partial n}}\Big )_T+ \Big (\frac{{\partial s}}{{\partial T}}\Big )_n \Big (\frac{{\partial p}}{{\partial n}}\Big )_T\Big \}+k^4 n_0^4 T^2 \omega ^2 \nonumber \\&\times \Big (\frac{{\partial s}}{{\partial n}}\Big )_T^2 \Big (\frac{{\partial p}}{{\partial n}}\Big )_T^2+2k^2 n_0 T^{2} \kappa \omega ^2 \Big (\frac{{\partial p}}{{\partial T}}\Big )_n\nonumber \\&\times \Big \{ k^4 T\kappa \Big (\frac{{\partial p}}{{\partial n}}\Big )_T+T \omega ^2 \Big (\frac{{\partial s}}{{\partial n}}\Big )_T k^2( \zeta +\frac{4}{3} \eta ) \nonumber \\&-T^{4} \kappa \omega ^2\Big \}+n_0^2 T^{2}\Big \{ h_{0}k^{2} \kappa ^2 \Big (\frac{{\partial p}}{{\partial n}}\Big )_T^2\nonumber \\&+k^{2}T^4 \kappa ^2 \omega ^4-2 k^4 T^{2} \kappa \omega ^4 \Big (\frac{{\partial p}}{{\partial n}}\Big )_T^{2}\nonumber \\&+2k^2 h_{0}T \kappa \omega ^2 ( \zeta +\frac{4}{3} \eta )+\Big (\frac{{\partial s}}{{\partial T}}\Big )_n^2 k^4 ( \zeta \nonumber \\&+\frac{4}{3}\eta )^{2}+2k^4T^{2} \kappa \Big (\frac{{\partial p}}{{\partial T}}\Big )_n \nonumber \\&\times \Big (\frac{{\partial s}}{{\partial n}}\Big )_T (\zeta +\frac{4}{3} \eta )\Big \}\Bigg ] \Big < \delta n(\mathbf {k},0)\delta n(\mathbf {k},0)\Big > \end{aligned}$$
(50)

where

$$\begin{aligned} \mathcal {S}_{nn}(\mathbf {k},\omega )=\frac{\mathcal {S^\prime }_{nn}(\mathbf {k},\omega )}{\Big < \delta n(\mathbf {k},0)\delta n(\mathbf {k},0)\Big >} \end{aligned}$$
(51)

The expression for \(\mathcal {S}_{nn}(\mathbf {k},\omega )\) contain derivatives of several thermodynamics quantities. In this appendix we recast these derivatives in terms of response functions like: isothermal and adiabatic compressibilities (\(\kappa _T\) and \(\kappa _s\)), specific heats (\(C_P\) and \(C_V\)), baryon number susceptibility (\(\chi _B\)) and velocity of sound (\(c_s\)), etc. The baryon number density (n) and the entropy density (s) can be written as:

$$\begin{aligned} n=\Big (\frac{\partial p}{\partial \mu }\Big )_{T};\,\,\,\,\, s=\Big (\frac{\partial p}{\partial T}\Big )_{\mu } \end{aligned}$$
(52)

Baryon number susceptibility, isothermal compressibility and adiabatic compressibility are given by,

$$\begin{aligned} \chi _{B}=\Big (\frac{\partial n}{\partial \mu }\Big )_{T}; \kappa _{T}=\frac{1}{n_{0}}\Big (\frac{\partial n}{\partial p}\Big )_{T}; \kappa _{s}=\frac{1}{n_{0}}\Big (\frac{\partial n}{\partial p}\Big )_{s} \end{aligned}$$
(53)

Specific heats can be expressed as:

$$\begin{aligned} C_{P}=T\Big (\frac{\partial s}{\partial T}\Big )_{p}; C_{V}= & {} T\Big (\frac{\partial s}{\partial T}\Big )_{V}=T\Big (\frac{\partial s}{\partial T}\Big )_{n}\nonumber \\= & {} \Big (\frac{\partial \epsilon }{\partial T}\Big )_{V}=\Big (\frac{\partial \epsilon }{\partial T}\Big )_{n} \end{aligned}$$
(54)

Now we write down the expression for partial derivatives, \((\frac{\partial p}{\partial T})_{n}, (\frac{\partial p}{\partial n})_{T}, (\frac{\partial \epsilon }{\partial T})_{n}\) and \(\Big (\frac{\partial \epsilon }{\partial n}\Big )_{T}\) below. \((\frac{\partial p}{\partial T})_{n}\) can be evaluated as:

$$\begin{aligned} \Big (\frac{\partial p}{\partial T}\Big )_{n}= & {} \frac{\partial (p, n)}{\partial (T,n)}\nonumber \\= & {} \frac{\partial (p, n)}{\partial (T, p)}\frac{\partial (T, p)}{\partial (s, p)}\frac{\partial (s, p)}{\partial (s, \epsilon )}\frac{\partial (s, \epsilon )}{\partial (s, n)}\frac{\partial (s, n)}{\partial (T, n)} \nonumber \\= & {} \Big [-\Big (\frac{\partial n}{\partial T}\Big )_{p}\Big ]\Big (\frac{\partial T}{\partial s}\Big )_{p} \Big (\frac{\partial p}{\partial \epsilon }\Big )_{s/n}\Big (\frac{\partial \epsilon }{\partial n}\Big )_{s}\Big (\frac{\partial s}{\partial T}\Big )_{n} \nonumber \\= & {} n_{0}\alpha _{P}\frac{T}{C_{P}}c^{2}_{s}\Big (\frac{\partial \epsilon }{\partial n}\Big )_{s}\frac{C_{V}}{T}\nonumber \\= & {} n_{0}c^{2}_{s}\alpha _{p} \frac{C_{V}}{C_{P}}\Big (\frac{\partial \epsilon }{\partial n}\Big )_{s} \end{aligned}$$
(55)

Using the relation,

$$\begin{aligned} d\epsilon =Tds+\mu dn \,\,\,\,\, \text {and } \mu =\Big (\frac{\partial \epsilon }{\partial n}\Big )_{s} \end{aligned}$$
(56)

we write:

$$\begin{aligned} \Big (\frac{\partial p}{\partial T}\Big )_{n}=\mu n_{0}c^{2}_{s}\alpha _{p} \frac{C_{V}}{C_{P}} \end{aligned}$$
(57)

Next we consider \(\Big (\frac{\partial p}{\partial n}\Big )_{T}\):

$$\begin{aligned} {\Big (\frac{\partial p}{\partial n}\Big )_{T}= \frac{1}{n_{0}\kappa _{T}}} \end{aligned}$$
(58)
$$\begin{aligned} \Big (\frac{\partial p}{\partial n}\Big )_{T}= & {} \frac{\partial (p, T)}{\partial (n, T)} =\frac{\partial (p, T)}{\partial (p, s)}\frac{\partial (p, s)}{\partial (\epsilon , s)}\frac{\partial (\epsilon , s)}{\partial (n,s)}\frac{\partial (n, s)}{\partial (n, T)}\nonumber \\= & {} \Big (\frac{\partial T}{\partial s}\Big )_{p} \Big (\frac{\partial p}{\partial \epsilon }\Big )_{s/n} \Big (\frac{\partial \epsilon }{\partial n}\Big )_{s}\Big (\frac{\partial s}{\partial T}\Big )_{n}\nonumber \\= & {} \frac{T}{C_{P}}c^{2}_{s}\Big (\frac{\partial \epsilon }{\partial n}\Big )_{s}\frac{C_{V}}{T} \end{aligned}$$
(59)
$$\begin{aligned}= & {} \mu c^{2}_{s} \frac{C_{V}}{C_{P}} \end{aligned}$$
(60)

The factor, \(\Big (\frac{\partial s}{\partial T}\Big )_{n}\) can be written as:

$$\begin{aligned} \Big (\frac{\partial s}{\partial T}\Big )_{n}=\frac{1}{T}\Big (\frac{T_{0}\partial s}{\partial T}\Big )_{n}=\frac{C_{V}}{T} \end{aligned}$$
(61)

For fixed net baryon number, \(c_n\) can be written as \(c_{n}=C_{V}\). Therefore,

$$\begin{aligned} {\Big (\frac{\partial \epsilon }{\partial T}\Big )_{n}=C_{V}} \end{aligned}$$
(62)

We evaluate the derivative \(\Big (\frac{\partial \epsilon }{\partial n}\Big )_{T}\) as

$$\begin{aligned} \Big (\frac{\partial s}{\partial n}\Big )_{T}= & {} -\Big (\frac{\partial s}{\partial T}\Big )_{n}\Big (\frac{\partial T}{\partial n}\Big )_{s}=-\frac{1}{T}\Big (\frac{T\partial s}{\partial T}\Big )_{n}\Big (\frac{\partial T}{\partial n}\Big )_{s}\nonumber \\= & {} -\frac{C_{V}}{T}\frac{1}{n_{0}}\Big [n_{0}\Big (\frac{\partial T}{\partial n}\Big )_{s}\Big ]= \frac{C_{V}}{n_{0}T\alpha _{s}} \end{aligned}$$
(63)

The velocity of sound is given by:

$$\begin{aligned} c_s^2=\Big (\frac{\partial p}{\partial \epsilon }\Big )_{s/n}= \frac{nd\mu +sdT}{\mu dn+Tds}= \frac{nF dT+sdT}{\mu (\frac{\partial n}{\partial T})_\mu dT+ \mu (\frac{\partial n}{\partial \mu })_T d\mu +T(\frac{\partial s}{\partial T})_\mu dT+ T(\frac{\partial s}{\partial \mu })_T d\mu }\nonumber \\ =\frac{nF dT+sdT}{\mu (\frac{\partial n}{\partial T})_\mu dT+ \mu F(\frac{\partial n}{\partial \mu })_T dT+T(\frac{\partial s}{\partial T})_\mu dT+ TF(\frac{\partial s}{\partial \mu })_T dT} = \frac{nF+s}{\mu (\frac{\partial n}{\partial T})_\mu + \mu F(\frac{\partial n}{\partial \mu })_T+T(\frac{\partial s}{\partial T})_\mu + TF(\frac{\partial s}{\partial \mu })_T} \end{aligned}$$
(64)

where,

$$\begin{aligned} F= & {} \frac{(\frac{\partial s}{\partial T})_\mu - \frac{s}{n}(\frac{\partial n}{\partial T})_{\mu }}{\frac{s}{n}(\frac{\partial n}{\partial \mu })_{T} -(\frac{\partial s}{\partial \mu })_T} \end{aligned}$$
(65)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasanujjaman, M., Sarwar, G., Rahaman, M. et al. Dynamical spectral structure of density fluctuation near the QCD critical point. Eur. Phys. J. A 57, 283 (2021). https://doi.org/10.1140/epja/s10050-021-00589-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-021-00589-3

Navigation