Skip to main content
Log in

Fluctuations and correlations of net baryon number, electric charge and strangeness in a background magnetic field

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

This article has been updated

Abstract

We present results on the second-order fluctuations of and correlations among net baryon number, electric charge and strangeness in (2 + 1)-flavor lattice QCD in the presence of a background magnetic field. Simulations are performed using the tree-level improved gauge action and the highly improved staggered quark (HISQ) action with a fixed scale approach (\(a\simeq \) 0.117 fm). The light quark mass is set to be 1/10 of the physical strange quark mass and the corresponding pion mass is about 220 MeV at vanishing magnetic field. Simulations are performed on \(32^3\times N_\tau \) lattices with 9 values of \(N_\tau \) varying from 96 to 6 corresponding to temperatures ranging from zero up to 281 MeV. The magnetic field strength eB is simulated with 15 different values up to \(\sim \)2.5 GeV\(^2\) at each nonzero temperature. We find that quadratic fluctuations and correlations do not show any singular behavior at zero temperature in the current window of eB while they develop peaked structures at nonzero temperatures as eB grows. By comparing the electric charge-related fluctuations and correlations with hadron resonance gas model calculations and ideal gas limits we find that the changes in degrees of freedom start at lower temperatures in stronger magnetic fields. Significant effects induced by magnetic fields on the isospin symmetry and ratios of net baryon number and baryon-strangeness correlation to strangeness fluctuation are observed, which could be useful for probing the existence of a magnetic field in heavy-ion collision experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: As further studies on these data will be carried on by us, we will not make the data public at the moment.]

Change history

  • 29 July 2021

    The original online version of this article was revised: The corresponding author remark in brackets was removed for the author H.-T. Ding.

Notes

  1. Here we neglect the term arising from the vacuum energy, as which receives no contributions to the fluctuations and correlations of B, Q and S.

  2. One can also construct quantities without \(\chi _2^\mathrm{S}\) to reflect the isospin symmetry breaking, e.g. \((\chi _2^\mathrm{Q}- 2\chi _{11}^\mathrm{BQ})/(\chi _2^\mathrm{Q}+\chi _{11}^\mathrm{BQ})\), and \(0.5(2\chi _2^\mathrm{B}- \chi _{11}^\mathrm{BQ})/(\chi _2^\mathrm{B}+\chi _{11}^\mathrm{BQ})\). Both of these two quantities approach to \(\chi _2^d/\chi _2^u\) in the high-temperature limit.

  3. Here in the HRG calculations we adopt the PDG hadron spectrum except that at \(eB=0\) masses of pion, kaon and \(\rho \) determined in our current lattice setup are used instead of those listed in PDG.

  4. The eB-dependence seen at \(T\simeq 70\) MeV could be due to the statistics-hungry nature of the observables at low temperature and insufficient statistics we have in the simulation, similar in the cases of \(\chi _{2}^\mathrm{Q}\) and \(\chi _{11}^\mathrm{BQ}\).

References

  1. D.E. Kharzeev, L.D. McLerran, H.J. Warringa, The effects of topological charge change in heavy ion collisions: ‘Event by event P and CP violation’. Nucl. Phys. A 803, 227 (2008). https://doi.org/10.1016/j.nuclphysa.2008.02.298. arXiv:0711.0950

    Article  ADS  Google Scholar 

  2. V. Skokov, A.Y. Illarionov, V. Toneev, Estimate of the magnetic field strength in heavy-ion collisions. Int. J. Mod. Phys. A 24, 5925 (2009). https://doi.org/10.1142/S0217751X09047570. arXiv:0907.1396

    Article  ADS  Google Scholar 

  3. W.-T. Deng, X.-G. Huang, Event-by-event generation of electromagnetic fields in heavy-ion collisions. Phys. Rev. C 85, 044907 (2012). https://doi.org/10.1103/PhysRevC.85.044907. arXiv:1201.5108

    Article  ADS  Google Scholar 

  4. T. Vachaspati, Magnetic fields from cosmological phase transitions. Phys. Lett. B 265, 258 (1991). https://doi.org/10.1016/0370-2693(91)90051-Q

    Article  ADS  Google Scholar 

  5. K. Enqvist, P. Olesen, On primordial magnetic fields of electroweak origin. Phys. Lett. B 319, 178 (1993)

    Article  ADS  Google Scholar 

  6. D.E. Kharzeev, J. Liao, S.A. Voloshin, G. Wang, Chiral magnetic and vortical effects in high-energy nuclear collisions—a status report. Progr. Part. Nucl. Phys. 88, 1 (2016). https://doi.org/10.1016/j.ppnp.2016.01.001. arXiv:1511.04050

    Article  ADS  Google Scholar 

  7. D.E. Kharzeev, J. Liao, Chiral magnetic effect reveals the topology of gauge fields in heavy-ion collisions. Nat. Rev. Phys. 3, 55 (2021). https://doi.org/10.1038/s42254-020-00254-6. arXiv:2102.06623

    Article  Google Scholar 

  8. N. Astrakhantsev, V.V. Braguta, M. D’Elia, A.Y. Kotov, A.A. Nikolaev, F. Sanfilippo, Lattice study of the electromagnetic conductivity of the quark-gluon plasma in an external magnetic field. Phys. Rev. D 102, 054516 (2020). https://doi.org/10.1103/PhysRevD.102.054516. arXiv:1910.08516

    Article  ADS  Google Scholar 

  9. H.-T. Ding, O. Kaczmarek, F. Meyer, Thermal dilepton rates and electrical conductivity of the QGP from the lattice. Phys. Rev. D 94, 034504 (2016). https://doi.org/10.1103/PhysRevD.94.034504. arXiv:1604.06712

    Article  ADS  Google Scholar 

  10. H.-T. Ding, A. Francis, O. Kaczmarek, F. Karsch, E. Laermann et al., Thermal dilepton rate and electrical conductivity: An analysis of vector current correlation functions in quenched lattice QCD. Phys. Rev. D 83, 034504 (2011). https://doi.org/10.1103/PhysRevD.83.034504. arXiv:1012.4963

    Article  ADS  Google Scholar 

  11. G. Aarts, C. Allton, J. Foley, S. Hands, S. Kim, Spectral functions at small energies and the electrical conductivity in hot, quenched lattice QCD. Phys. Rev. Lett. 99, 022002 (2007). https://doi.org/10.1103/PhysRevLett.99.022002. arXiv:hep-lat/0703008

    Article  ADS  Google Scholar 

  12. STAR collaboration, First Observation of the Directed Flow of\(D^{0}\)and\(\overline{D^0}\)in Au + Au Collisions at\(\sqrt{s_{\rm NN}} = 200\)GeV. Phys. Rev. Lett. 123, 162301 (2019). https://doi.org/10.1103/PhysRevLett.123.162301. arXiv:1905.02052

  13. ALICE collaboration, Probing the effects of strong electromagnetic fields with charge-dependent directed flow in Pb-Pb collisions at the LHC, Phys. Rev. Lett. 125 (2020) 022301, https://doi.org/10.1103/PhysRevLett.125.022301, [arXiv:1910.14406]

  14. STAR collaboration, Low-\(p_T\)\(e^{+}e^{-}\) pair production in Au\(+\)Au collisions at \(\sqrt{s_{NN}} = 200\) GeV and U\(+\)U collisions at \(\sqrt{s_{NN}} = 193\) GeV at STAR. Phys. Rev. Lett. 121, 132301 (2018). https://doi.org/10.1103/PhysRevLett.121.132301. arXiv:1806.02295

  15. ATLAS collaboration, Observation of centrality-dependent acoplanarity for muon pairs produced via two-photon scattering in Pb + Pb collisions at \(\sqrt{s_{\rm NN}}=5.02\) TeV with the ATLAS detector. Phys. Rev. Lett. 121, 212301 (2018). https://doi.org/10.1103/PhysRevLett.121.212301. arXiv:1806.08708

  16. G.S. Bali, F. Bruckmann, G. Endrodi, Z. Fodor, S.D. Katz, A. Schafer, QCD quark condensate in external magnetic fields. Phys. Rev. D 86, [071502 (2012). https://doi.org/10.1103/PhysRevD.86.071502. arXiv:1206.4205

    Article  ADS  MATH  Google Scholar 

  17. H.T. Ding, S.T. Li, A. Tomiya, X.D. Wang, Y. Zhang, Chiral properties of (2+1)-flavor QCD in strong magnetic fields at zero temperature. arXiv:2008.00493

  18. G.S. Bali, F. Bruckmann, G. Endrödi, S.D. Katz, A. Schäfer, The QCD equation of state in background magnetic fields. JHEP 08, 177 (2014). https://doi.org/10.1007/JHEP08(2014)177. arXiv:1406.0269

    Article  ADS  Google Scholar 

  19. G.S. Bali, F. Bruckmann, G. Endrodi, Z. Fodor, S.D. Katz, S. Krieg et al., The QCD phase diagram for external magnetic fields. JHEP 02, 044 (2012). https://doi.org/10.1007/JHEP02(2012)044. arXiv:1111.4956

    Article  ADS  MATH  Google Scholar 

  20. H.-T. Ding, C. Schmidt, A. Tomiya, X.-D. Wang, Chiral phase structure of three flavor QCD in a background magnetic field. Phys. Rev. D 102, 054505 (2020). https://doi.org/10.1103/PhysRevD.102.054505. arXiv:2006.13422

    Article  ADS  MathSciNet  Google Scholar 

  21. C. Bonati, M. D’Elia, A. Rucci, Heavy quarkonia in strong magnetic fields. Phys. Rev. D 92, 054014 (2015). https://doi.org/10.1103/PhysRevD.92.054014. arXiv:1506.07890

    Article  ADS  Google Scholar 

  22. G.S. Bali, B.B. Brandt, G. Endrődi, B. Gläßle, Meson masses in electromagnetic fields with Wilson fermions. Phys. Rev. D 97, 034505 (2018). https://doi.org/10.1103/PhysRevD.97.034505. arXiv:1707.05600

    Article  ADS  Google Scholar 

  23. G. Endrődi, G. Markó, Magnetized baryons and the QCD phase diagram: NJL model meets the lattice. JHEP 08, 036 (2019). https://doi.org/10.1007/JHEP08(2019)036. arXiv:1905.02103

    Article  ADS  MathSciNet  Google Scholar 

  24. E.M. Ilgenfritz, M. Muller-Preussker, B. Petersson, A. Schreiber, Magnetic catalysis (and inverse catalysis) at finite temperature in two-color lattice QCD. Phys. Rev. D 89, 054512 (2014). https://doi.org/10.1103/PhysRevD.89.054512. arXiv:1310.7876

    Article  ADS  Google Scholar 

  25. V.G. Bornyakov, P.V. Buividovich, N. Cundy, O.A. Kochetkov, A. Schäfer, Deconfinement transition in two-flavor lattice QCD with dynamical overlap fermions in an external magnetic field. Phys. Rev. D 90, 034501 (2014). https://doi.org/10.1103/PhysRevD.90.034501. arXiv:1312.5628

    Article  ADS  Google Scholar 

  26. A. Tomiya, H.-T. Ding, X.-D. Wang, Y. Zhang, S. Mukherjee, C. Schmidt, Phase structure of three flavor QCD in external magnetic fields using HISQ fermions. PoS LATTICE2018 163, (2019). https://doi.org/10.22323/1.334.0163. arXiv:1904.01276

  27. G. Cao, Recent progresses on QCD phases in a strong magnetic field – views from Nambu–Jona-Lasinio model. arXiv:2103.00456

  28. I.A. Shovkovy, Magnetic catalysis: a review. Lect. Notes Phys. 871, 13 (2013). https://doi.org/10.1007/978-3-642-37305-3_2. arXiv:1207.5081

    Article  ADS  Google Scholar 

  29. J.O. Andersen, W.R. Naylor, A. Tranberg, Phase diagram of QCD in a magnetic field: a review. Rev. Mod. Phys. 88, 025001 (2016). https://doi.org/10.1103/RevModPhys.88.025001. arXiv:1411.7176

    Article  ADS  Google Scholar 

  30. M. D’Elia, F. Negro, Chiral properties of strong interactions in a magnetic background. Phys. Rev. D 83, 114028 (2011). https://doi.org/10.1103/PhysRevD.83.114028. arXiv:1103.2080

    Article  ADS  Google Scholar 

  31. T. Kojo, N. Su, The quark mass gap in a magnetic field. Phys. Lett. B 720, 192 (2013). https://doi.org/10.1016/j.physletb.2013.02.024. arXiv:1211.7318

    Article  ADS  MATH  Google Scholar 

  32. F. Bruckmann, G. Endrodi, T.G. Kovacs, Inverse magnetic catalysis and the Polyakov loop. JHEP 04, 112 (2013). https://doi.org/10.1007/JHEP04(2013)112. arXiv:1303.3972

    Article  ADS  Google Scholar 

  33. K. Fukushima, Y. Hidaka, Magnetic catalysis versus magnetic inhibition. Phys. Rev. Lett. 110, 031601 (2013). https://doi.org/10.1103/PhysRevLett.110.031601. arXiv:1209.1319

    Article  ADS  Google Scholar 

  34. M. Ferreira, P. Costa, O. Lourenço, T. Frederico, C. Providência, Inverse magnetic catalysis in the (2+1)-flavor Nambu-Jona-Lasinio and Polyakov-Nambu-Jona-Lasinio models. Phys. Rev. D 89, 116011 (2014). https://doi.org/10.1103/PhysRevD.89.116011. arXiv:1404.5577

    Article  ADS  Google Scholar 

  35. L. Yu, H. Liu, M. Huang, Spontaneous generation of local CP violation and inverse magnetic catalysis. Phys. Rev. D 90, 074009 (2014). https://doi.org/10.1103/PhysRevD.90.074009. arXiv:1404.6969

    Article  ADS  Google Scholar 

  36. B. Feng, D. Hou, H.-C. Ren, P.-P. Wu, Bose–Einstein condensation of bound pairs of relativistic fermions in a magnetic field. Phys. Rev. D 93, 085019 (2016). https://doi.org/10.1103/PhysRevD.93.085019. arXiv:1512.08894

    Article  ADS  MathSciNet  Google Scholar 

  37. X. Li, W.-J. Fu, Y.-X. Liu, Thermodynamics of 2+1 flavor Polyakov-Loop Quark-Meson model under external magnetic field. Phys. Rev. D 99, 074029 (2019). https://doi.org/10.1103/PhysRevD.99.074029. arXiv:1902.03866

    Article  ADS  MathSciNet  Google Scholar 

  38. S. Mao, From inverse to delayed magnetic catalysis in a strong magnetic field. Phys. Rev. D 94, 036007 (2016). https://doi.org/10.1103/PhysRevD.94.036007. arXiv:1605.04526

    Article  ADS  Google Scholar 

  39. U. Gürsoy, I. Iatrakis, M. Järvinen, G. Nijs, Inverse magnetic catalysis from improved holographic QCD in the Veneziano limit. JHEP 03, 053 (2017). https://doi.org/10.1007/JHEP03(2017)053. arXiv:1611.06339

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. K. Xu, J. Chao, M. Huang, Spin polarization inducing diamagnetism, inverse magnetic catalyasis and saturation behavior of charged pion spectra. arXiv:2007.13122

  41. X. Luo, N. Xu, Search for the QCD critical point with fluctuations of conserved quantities in relativistic heavy-ion collisions at RHIC: an overview. Nucl. Sci. Tech. 28, 112 (2017). https://doi.org/10.1007/s41365-017-0257-0. arXiv:1701.02105

    Article  Google Scholar 

  42. H.-T. Ding, F. Karsch, S. Mukherjee, Thermodynamics of strong-interaction matter from lattice QCD. Int. J. Mod. Phys. E 24, 1530007 (2015). https://doi.org/10.1142/S0218301315300076. arXiv:1504.05274

    Article  ADS  MATH  Google Scholar 

  43. M. Asakawa, U.W. Heinz, B. Muller, Fluctuation probes of quark deconfinement. Phys. Rev. Lett. 85, 2072 (2000). https://doi.org/10.1103/PhysRevLett.85.2072. arXiv:hep-ph/0003169

    Article  ADS  Google Scholar 

  44. S. Jeon, V. Koch, Charged particle ratio fluctuation as a signal for QGP. Phys. Rev. Lett. 85, 2076 (2000). https://doi.org/10.1103/PhysRevLett.85.2076. arXiv:hep-ph/0003168

    Article  ADS  Google Scholar 

  45. V. Koch, A. Majumder, J. Randrup, Baryon-strangeness correlations: a diagnostic of strongly interacting matter. Phys. Rev. Lett. 95, 182301 (2005). https://doi.org/10.1103/PhysRevLett.95.182301. arXiv:nucl-th/0505052

    Article  ADS  Google Scholar 

  46. H.T. Ding, S. Mukherjee, H. Ohno, P. Petreczky, H.P. Schadler, Diagonal and off-diagonal quark number susceptibilities at high temperatures. Phys. Rev. D 92, 074043 (2015). https://doi.org/10.1103/PhysRevD.92.074043. arXiv:1507.06637

    Article  ADS  Google Scholar 

  47. A. Bazavov et al., Strangeness at high temperatures: from hadrons to quarks. Phys. Rev. Lett. 111, 082301 (2013). https://doi.org/10.1103/PhysRevLett.111.082301. arXiv:1304.7220

    Article  ADS  Google Scholar 

  48. A. Bazavov et al., The melting and abundance of open charm hadrons. Phys. Lett. B 737, 210 (2014). https://doi.org/10.1016/j.physletb.2014.08.034. arXiv:1404.4043

    Article  ADS  Google Scholar 

  49. M.A. Stephanov, K. Rajagopal, E.V. Shuryak, Signatures of the tricritical point in QCD. Phys. Rev. Lett. 81, 4816 (1998). https://doi.org/10.1103/PhysRevLett.81.4816. arXiv:hep-ph/9806219

    Article  ADS  Google Scholar 

  50. M.A. Stephanov, K. Rajagopal, E.V. Shuryak, Event-by-event fluctuations in heavy ion collisions and the QCD critical point. Phys. Rev. D 60, 114028 (1999). https://doi.org/10.1103/PhysRevD.60.114028. arXiv:hep-ph/9903292

    Article  ADS  Google Scholar 

  51. B. Friman, F. Karsch, K. Redlich, V. Skokov, Fluctuations as probe of the QCD phase transition and freeze-out in heavy ion collisions at LHC and RHIC. Eur. Phys. J. C 71, 1694 (2011). https://doi.org/10.1140/epjc/s10052-011-1694-2. arXiv:1103.3511

    Article  ADS  Google Scholar 

  52. STAR collaboration, Nonmonotonic Energy Dependence of Net-Proton Number Fluctuations. Phys. Rev. Lett. 126, 092301 (2021). https://doi.org/10.1103/PhysRevLett.126.092301. arXiv:2001.02852

  53. W.-J. Fu, X. Luo, J.M. Pawlowski, F. Rennecke, R. Wen, S. Yin, Hyper-order baryon number fluctuations at finite temperature and density. arXiv:2101.06035

  54. H.-T. Ding, New developments in lattice QCD on equilibrium physics and phase diagram. Nucl. Phys. A 1005, 121940 (2021). https://doi.org/10.1016/j.nuclphysa.2020.121940. arXiv:2002.11957

    Article  Google Scholar 

  55. A. Rustamov, Overview of fluctuation and correlation measurements. Nucl. Phys. A 1005, 121858 (2021). https://doi.org/10.1016/j.nuclphysa.2020.121858. arXiv:2005.13398

    Article  Google Scholar 

  56. A. Bazavov et al., The QCD equation of state to \(\cal{O}(\mu _B^6)\) from Lattice QCD. Phys. Rev. D 95, 054504 (2017). https://doi.org/10.1103/PhysRevD.95.054504. arXiv:1701.04325

    Article  ADS  Google Scholar 

  57. K. Fukushima, Y. Hidaka, Magnetic shift of the chemical freeze-out and electric charge fluctuations. Phys. Rev. Lett. 117, 102301 (2016). https://doi.org/10.1103/PhysRevLett.117.102301. arXiv:1605.01912

    Article  ADS  Google Scholar 

  58. M. Ferreira, P. Costa, C. Providência, Net baryon-number fluctuations in magnetized quark matter. Phys. Rev. D 98, 034003 (2018). https://doi.org/10.1103/PhysRevD.98.034003. arXiv:1806.05758

    Article  ADS  Google Scholar 

  59. A. Bhattacharyya, S.K. Ghosh, R. Ray, S. Samanta, Exploring effects of magnetic field on the hadron resonance gas. EPL 115, 62003 (2016). https://doi.org/10.1209/0295-5075/115/62003. arXiv:1504.04533

    Article  ADS  Google Scholar 

  60. G. Kadam, S. Pal, A. Bhattacharyya, Interacting hadron resonance gas model in magnetic field and the fluctuations of conserved charges. J. Phys. G 47, 125106 (2020). https://doi.org/10.1088/1361-6471/abba70. arXiv:1908.10618

    Article  ADS  Google Scholar 

  61. W.-J. Fu, Fluctuations and correlations of hot QCD matter in an external magnetic field. Phys. Rev. D 88, 014009 (2013). https://doi.org/10.1103/PhysRevD.88.014009. arXiv:1306.5804

    Article  ADS  Google Scholar 

  62. R. Dashen, S.-K. Ma, H.J. Bernstein, S Matrix formulation of statistical mechanics. Phys. Rev. 187, 345 (1969). https://doi.org/10.1103/PhysRev.187.345

    Article  ADS  MATH  Google Scholar 

  63. H.T. Ding, S.T. Li, Q. Shi, A. Tomiya, X.D. Wang, . Zhang, QCD phase structure in strong magnetic fields. In: Criticality in QCD and the Hadron Resonance Gas, 11, 2020. arXiv:2011.04870

  64. HotQCD Collaboration collaboration, Fluctuations and Correlations of net baryon number, electric charge, and strangeness: a comparison of lattice QCD results with the hadron resonance gas model. Phys. Rev. D 86, 034509 (2012). https://doi.org/10.1103/PhysRevD.86.034509. arXiv:1203.0784

  65. P. Petreczky, Lattice QCD at non-zero temperature. J. Phys. G 39, 093002 (2012). https://doi.org/10.1088/0954-3899/39/9/093002. arXiv:1203.5320

    Article  ADS  Google Scholar 

  66. G. Endrödi, QCD equation of state at nonzero magnetic fields in the Hadron Resonance Gas model. JHEP 04, 023 (2013). https://doi.org/10.1007/JHEP04(2013)023. arXiv:1301.1307

    Article  ADS  MathSciNet  MATH  Google Scholar 

  67. Particle Data Group collaboration, Review of Particle Physics. Phys. Rev. D 98, 030001 (2018). https://doi.org/10.1103/PhysRevD.98.030001

  68. J.I. Kapusta, C. Gale, Finite-temperature field theory: Principles and applications, Cambridge Monographs on Mathematical Physics. Cambridge University Press (2011). https://doi.org/10.1017/CBO9780511535130

    Article  ADS  MATH  Google Scholar 

  69. M. Laine, A. Vuorinen, Basics of Thermal Field Theory, vol. 925, Springer (2016). https://doi.org/10.1007/978-3-319-31933-9. arXiv:1701.01554

  70. HPQCD, UKQCD collaboration, Highly improved staggered quarks on the lattice, with applications to charm physics. Phys. Rev. D 75, 054502 (2007). https://doi.org/10.1103/PhysRevD.75.054502. arXiv:hep-lat/0610092

  71. A. Bazavov, S. Dentinger, H.-T. Ding et al., Meson screening masses in (2+1)-flavor QCD. Phys. Rev. D 100, 094510 (2019). https://doi.org/10.1103/PhysRevD.100.094510. arXiv:1908.09552

    Article  ADS  Google Scholar 

  72. M. Al-Hashimi, U.-J. Wiese, Discrete accidental symmetry for a particle in a constant magnetic field on a torus. Ann. Phys. 324, 343 (2009). https://doi.org/10.1016/j.aop.2008.07.006. arXiv:0807.0630

    Article  ADS  MathSciNet  MATH  Google Scholar 

  73. G. Endrodi, M. Giordano, S.D. Katz, T.G. Kovács, F. Pittler, Magnetic catalysis and inverse catalysis for heavy pions. JHEP 07, 007 (2019). https://doi.org/10.1007/JHEP07(2019)007. arXiv:1904.10296

    Article  ADS  Google Scholar 

  74. A. Bazavov et al., Skewness, kurtosis, and the fifth and sixth order cumulants of net baryon-number distributions from lattice QCD confront high-statistics STAR data. Phys. Rev. D 101, 074502 (2020). https://doi.org/10.1103/PhysRevD.101.074502. arXiv:2001.08530

    Article  ADS  Google Scholar 

  75. H.T. Ding et al., Chiral phase transition temperature in (2+1)-flavor QCD. Phys. Rev. Lett. 123, 062002 (2019). https://doi.org/10.1103/PhysRevLett.123.062002. arXiv:1903.04801

    Article  ADS  MathSciNet  Google Scholar 

  76. S. Borsanyi, Z. Fodor, J.N. Guenther, R. Kara, S.D. Katz, P. Parotto et al., The QCD crossover at finite chemical potential from lattice simulations. arXiv:2002.02821

  77. M. D’Elia, F. Manigrasso, F. Negro, F. Sanfilippo, QCD phase diagram in a magnetic background for different values of the pion mass. Phys. Rev. D 98, 054509 (2018). https://doi.org/10.1103/PhysRevD.98.054509. arXiv:1808.07008

    Article  ADS  Google Scholar 

  78. WHOT-QCD collaboration, \(N_f = 2+1\) QCD thermodynamics with gradient flow using two-loop matching coefficients. Phys. Rev. D 102, 014510 (2020). https://doi.org/10.1103/PhysRevD.102.014510. arXiv:2005.00251

  79. M.N. Chernodub, Spontaneous electromagnetic superconductivity of vacuum in strong magnetic field: evidence from the Nambu-Jona-Lasinio model. Phys. Rev. Lett. 106, 142003 (2011). https://doi.org/10.1103/PhysRevLett.106.142003. arXiv:1101.0117

    Article  ADS  Google Scholar 

  80. HotQCD collaboration, The chiral phase transition temperature in (2+1)-flavor QCD, in 18th International Conference on Hadron Spectroscopy and Structure, pp. 672–677 (2020). https://doi.org/10.1142/9789811219313_0115

  81. G. Endrodi, Critical point in the QCD phase diagram for extremely strong background magnetic fields. JHEP 07, 173 (2015). https://doi.org/10.1007/JHEP07(2015)173. arXiv:1504.08280

    Article  ADS  Google Scholar 

  82. A. Bazavov, T. Bhattacharya, M. Cheng, C. DeTar, H.-T. Ding et al., The chiral and deconfinement aspects of the QCD transition. Phys. Rev. D 85, 054503 (2012). https://doi.org/10.1103/PhysRevD.85.054503. arXiv:1111.1710

    Article  ADS  Google Scholar 

  83. V. Skokov, A.Y. Illarionov, V. Toneev, Estimate of the magnetic field strength in heavy-ion collisions. Int. J. Modern Phys. A 24, 5925 (2009)

    Article  ADS  Google Scholar 

  84. G. Martinelli, G. Parisi, R. Petronzio, F. Rapuano, The proton and neutron magnetic moments in lattice QCD. Phys. Lett. B 116, 434 (1982). https://doi.org/10.1016/0370-2693(82)90162-9

    Article  ADS  Google Scholar 

  85. NPLQCD collaboration, Magnetic structure of light nuclei from lattice QCD, Phys. Rev. D92 (2015) 114502, https://doi.org/10.1103/PhysRevD.92.114502, [arXiv:1506.05518]

  86. A. Parreno, M.J. Savage, B.C. Tiburzi, J. Wilhelm, E. Chang, W. Detmold et al., Octet baryon magnetic moments from lattice QCD: approaching experiment from a three-flavor symmetric point. Phys. Rev. D 95, 114513 (2017). https://doi.org/10.1103/PhysRevD.95.114513. arXiv:1609.03985

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank Frithjof Karsch and Swagato Mukherjee for useful discussions, and the HotQCD collaboration for sharing its software suite based on which the codes used in the current study for generating gauge configurations and computing the Taylor expansion coefficients in nonzero magnetic fields are developed. This work was supported by the NSFC under Grant Numbers 11535012, 11775096 and 11947237. The numerical simulations have been performed on the GPU cluster in the Nuclear Science Computing Center at Central China Normal University (NSC\(^3\)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H.-T. Ding.

Additional information

Communicated by Carsten Urbach

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, HT., Li, ST., Shi, Q. et al. Fluctuations and correlations of net baryon number, electric charge and strangeness in a background magnetic field. Eur. Phys. J. A 57, 202 (2021). https://doi.org/10.1140/epja/s10050-021-00519-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-021-00519-3

Navigation