Skip to main content
Log in

Why nuclear forces favor the highest weight irreducible representations of the fermionic SU(3) symmetry

  • Review
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The consequences of the attractive, short-range nucleon–nucleon (NN) interaction on the wave functions of the Elliott SU(3) and the proxy-SU(3) symmetry are discussed. The NN interaction favors the most symmetric spatial SU(3) irreducible representation, which corresponds to the maximal spatial overlap among the fermions. The percentage of the symmetric components out of the total in an SU(3) wave function is introduced, through which it is found, that no SU(3) irrep is more symmetric than the highest weight irrep for a certain number of valence particles in a three dimensional, isotropic, harmonic oscillator shell. The consideration of the highest weight irreps in nuclei and in alkali metal clusters, leads to the prediction of a prolate to oblate shape transition beyond the mid-shell region

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All the data are presented in the manuscript.]

References

  1. D. Bonatsos, I.E. Assimakis, N. Minkov, A. Martinou, R.B. Cakirli, R.F. Casten, K. Blaum, Phys. Rev. C 95(6), 064325 (2017). https://doi.org/10.1103/PhysRevC.95.064325

    Article  ADS  Google Scholar 

  2. D. Bonatsos, I.E. Assimakis, N. Minkov, A. Martinou, S. Sarantopoulou, R.B. Cakirli, R.F. Casten, K. Blaum, Phys. Rev. C 95(6), 064326 (2017). https://doi.org/10.1103/physrevc.95.064326

    Article  ADS  Google Scholar 

  3. A. Martinou, D. Bonatsos, N. Minkov, I.E. Assimakis, S.K. Peroulis, S. Sarantopoulou, J. Cseh, Eur. Phys. J. A 56(9), 239 (2020). https://doi.org/10.1140/epja/s10050-020-00239-0

    Article  ADS  Google Scholar 

  4. B.G. Wybourne, Classical Groups for Physicists (Wiley, London, 1974)

    MATH  Google Scholar 

  5. M. Moshinsky, Y. Smirnov, The Harmonic Oscillator in Modern Physics, Contemporary Concepts in Physics, vol. 9 (Harwood Academic Publishers, Amsterdam, 1996)

    MATH  Google Scholar 

  6. F. Iachello, Lie Algebras and Applications (Springer, Berlin, 2015). https://doi.org/10.1007/978-3-662-44494-8

    Book  MATH  Google Scholar 

  7. V.K.B. Kota, SU(3) Symmetry in Atomic Nuclei (Springer, Singapore, 2020). https://doi.org/10.1007/978-981-15-3603-8

    Book  MATH  Google Scholar 

  8. J.P. Elliott, Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 245(1240), 128 (1958). https://doi.org/10.1098/rspa.1958.0072

    Article  ADS  Google Scholar 

  9. J.P. Elliott, Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 245(1243), 562 (1958). https://doi.org/10.1098/rspa.1958.0101

    Article  ADS  Google Scholar 

  10. J.P. Elliott, M. Harvey, Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 272(1351), 557 (1963). https://doi.org/10.1098/rspa.1963.0071

    Article  ADS  Google Scholar 

  11. J.P. Elliott, C.E. Wilsdon, Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 302(1471), 509 (1968). https://doi.org/10.1098/rspa.1968.0033

    Article  ADS  Google Scholar 

  12. R. Raju, J. Draayer, K. Hecht, Nucl. Phys. A 202(3), 433 (1973). https://doi.org/10.1016/0375-9474(73)90635-0

    Article  ADS  Google Scholar 

  13. J. Draayer, K. Weeks, Ann. Phys. 156(1), 41 (1984). https://doi.org/10.1016/0003-4916(84)90210-0

    Article  ADS  Google Scholar 

  14. J.P. Draayer, K.J. Weeks, Phys. Rev. Lett. 51(16), 1422 (1983). https://doi.org/10.1103/physrevlett.51.1422

    Article  ADS  Google Scholar 

  15. O. Castaños, M. Moshinsky, C. Quesne, Phys. Lett. B 277(3), 238 (1992). https://doi.org/10.1016/0370-2693(92)90741-l

    Article  ADS  Google Scholar 

  16. A.P. Zuker, J. Retamosa, A. Poves, E. Caurier, Phys. Rev. C 52(4), 1741 (R) (1995). https://doi.org/10.1103/physervc.92.024320

    Article  ADS  Google Scholar 

  17. A.P. Zuker, A. Poves, F. Nowacki, S.M. Lenzi, Phys. Rev. C 92(2), 024320 (2015). https://doi.org/10.1103/physrevc.92.024320

    Article  ADS  Google Scholar 

  18. D. Bonatsos, EPJA 53(7), 148 (2017). https://doi.org/10.1140/epja/i2017-12346-x

    Article  ADS  Google Scholar 

  19. F. Iachello, A. Arima, The Interacting Boson Model (Cambridge University Press, Cambridge, 1987). https://doi.org/10.1017/cbo9780511895517

    Book  Google Scholar 

  20. F. Iachello, P. van Isacker, The interacting Boson–Fermion model (Cambridge University Press, Cambridge, 1991). https://doi.org/10.1017/cbo9780511549724

    Book  MATH  Google Scholar 

  21. A. Frank, P. VanIsacker, Symmetry Methods in Molecules and Nuclei (S y G, Mexico, 2005)

    Google Scholar 

  22. P.P. Raychev, C. R. Acad. Bulg. Sci. 25(11), 1503 (1972)

    MathSciNet  Google Scholar 

  23. G. Afanasiev, S. Abramov, P. Raychev, Yad. Fiz. 16, 53 (1972)

    Google Scholar 

  24. P. Raychev, R. Roussev, Yad. Fiz. 27, 1501 (1978)

    Google Scholar 

  25. C.L. Wu, D.H. Feng, X.G. Chen, J.Q. Chen, M.W. Guidry, Phys. Rev. C 36(3), 1157 (1987). https://doi.org/10.1103/physrevc.36.1157

    Article  ADS  MathSciNet  Google Scholar 

  26. G. Rosensteel, D. Rowe, Ann. Phys. 123(1), 36 (1979). https://doi.org/10.1016/0003-4916(79)90264-1

    Article  ADS  Google Scholar 

  27. D. Rowe, G. Rosensteel, Ann. Phys. 126(1), 198 (1980). https://doi.org/10.1016/0003-4916(80)90380-2

    Article  ADS  Google Scholar 

  28. D.J. Rowe, J.L. Wood, Fundamentals of Nuclear Models (World Scientific, Singapore, 2010). https://doi.org/10.1142/6209

    Book  MATH  Google Scholar 

  29. F. Iachello, R. Levine, Algebraic Theory of Molecules, vol. 99 (Oxford University Press, Oxford, 1995). https://doi.org/10.1002/bbpc.19950990427

    Book  Google Scholar 

  30. S. Nilsson, Dan. Mat. Fys. Medd. 29(16), 1 (1955)

    Google Scholar 

  31. S.G. Nilsson, I. Ragnarsson, Shapes and Shells in Nuclear Structure (Cambridge University Press, Cambridge, 1995)

    Google Scholar 

  32. M.G. Mayer, Phys. Rev. 74(3), 235 (1948). https://doi.org/10.1103/physrev.74.235

    Article  ADS  Google Scholar 

  33. M.G. Mayer, J.H.D. Jensen, Elementary Theory of Nuclear Shell Structure, vol. 68 (Wiley, New York, 1956). https://doi.org/10.1002/ange.19560681011

    Book  MATH  Google Scholar 

  34. K. Clemenger, Phys. Rev. B 32(2), 1359 (1985). https://doi.org/10.1103/physrevb.32.1359

    Article  ADS  Google Scholar 

  35. W.A. de Heer, Rev. Mod. Phys. 65(3), 611 (1993). https://doi.org/10.1103/revmodphys.65.611

    Article  ADS  Google Scholar 

  36. M. Brack, Rev. Mod. Phys. 65(3), 677 (1993). https://doi.org/10.1103/revmodphys.65.677

    Article  ADS  Google Scholar 

  37. V.O. Nesterenko, Fiz. Elem. Chastits At. Yadra 23, 1665 (1992)

    Google Scholar 

  38. W.A. de Heer, W. Knight, M. Chou, M.L. Cohen, Solid State Physics (Elsevier, Amsterdam, 1987), pp. 93–181. https://doi.org/10.1016/s0081-1947(08)60691-8

    Book  Google Scholar 

  39. T. Martin, T. Bergmann, H. Göhlich, T. Lange, Chem. Phys. Lett. 172(3–4), 209 (1990). https://doi.org/10.1016/0009-2614(90)85389-t

    Article  ADS  Google Scholar 

  40. T.P. Martin, T. Bergmann, H. Ghlich, T. Lange, Z. Phys. D At. Mol. Clust. 19(1–4), 25 (1991). https://doi.org/10.1007/bf01448248

    Article  ADS  Google Scholar 

  41. S. Bjørnholm, J. Borggreen, O. Echt, K. Hansen, J. Pedersen, H.D. Rasmussen, Phys. Rev. Lett. 65(13), 1627 (1990). https://doi.org/10.1103/physrevlett.65.1627

    Article  ADS  Google Scholar 

  42. S. Bjørnholm, J. Borggreen, O. Echt, K. Hansen, J. Pedersen, H.D. Rasmussen, Z. Phys. D At. Mol. Clust. 19(1–4), 47 (1991). https://doi.org/10.1007/bf01448252

    Article  ADS  Google Scholar 

  43. W.D. Knight, K. Clemenger, W.A. de Heer, W.A. Saunders, M.Y. Chou, M.L. Cohen, Phys. Rev. Lett. 52(24), 2141 (1984). https://doi.org/10.1103/physrevlett.52.2141

    Article  ADS  Google Scholar 

  44. J. Pedersen, S. Bjørnholm, J. Borggreen, K. Hansen, T.P. Martin, H.D. Rasmussen, Nature 353, 733 (1991). https://doi.org/10.1038/353733a0

    Article  ADS  Google Scholar 

  45. P. Jena, S.N. Khanna, B.K. Rao (eds.), Physics and Chemistry of Finite Systems: From Clusters to Crystals (Springer, Utrecht, 1992). https://doi.org/10.1007/978-94-017-2645-0

    Book  Google Scholar 

  46. C. Bréchignac, P. Cahuzac, F. Carlier, M. deFrutos, Phys. Rev. B 47(4), 2271 (1993). https://doi.org/10.1103/physrevb.47.2271

    Article  ADS  Google Scholar 

  47. W. Greiner, Z. Phys. At. Hadrons Nuclei 349(3–4), 315 (1994). https://doi.org/10.1007/bf01288984

    Article  ADS  Google Scholar 

  48. R.F. Casten, A.I. Namenson, W.F. Davidson, D.D. Warner, H.G. Borner, Phys. Lett. B 76(3), 280 (1978). https://doi.org/10.1016/0370-2693(78)90787-6

    Article  ADS  Google Scholar 

  49. N. Alkhomashi, P.H. Regan, Z. Podolyák, S. Pietri, A.B. Garnsworthy, S.J. Steer, J. Benlliure, E. Caserejos, R.F. Casten, J. Gerl, H.J. Wollersheim, J. Grebosz, G. Farrelly, M. Górska, I. Kojouharov, H. Schaffner, A. Algora, G. Benzoni, A. Blazhev, P. Boutachkov, A.M. Bruce, A.M.D. Bacelar, I.J. Cullen, L. Cáceres, P. Doornenbal, M.E. Estevez, Y. Fujita, W. Gelletly, R. Hoischen, R. Kumar, N. Kurz, S. Lalkovski, Z. Liu, C. Mihai, F. Molina, A.I. Morales, D. Mücher, W. Prokopowicz, B. Rubio, Y. Shi, A. Tamii, S. Tashenov, J.J. Valiente-Dobón, P.M. Walker, P.J. Woods, F.R. Xu, Phys. Rev. C 80(6), 064308 (2009). https://doi.org/10.1103/physrevc.80.064308

    Article  ADS  Google Scholar 

  50. C. Wheldon, J.G. Narro, C.J. Pearson, P.H. Regan, Z. Podolyák, D.D. Warner, P. Fallon, A.O. Macchiavelli, M. Cromaz, Phys. Rev. C 63(1), 011304(R) (2000). https://doi.org/10.1103/physrevc.63.011304

    Article  ADS  Google Scholar 

  51. Z. Podolyák, S.J. Steer, S. Pietri, F.R. Xu, H.L. Liu, P.H. Regan, D. Rudolph, A.B. Garnsworthy, R. Hoischen, M. Górska, J. Gerl, H.J. Wollersheim, T. Kurtukian-Nieto, G. Benzoni, T. Shizuma, F. Becker, P. Bednarczyk, L. Caceres, P. Doornenbal, H. Geissel, J. Greȩbosz, A. Kelic, I. Kojouharov, N. Kurz, F. Montes, W. Prokopowicz, T. Saito, H. Schaffner, S. Tashenov, A. Heinz, M. Pfützner, A. Jungclaus, D.L. Balabanski, C. Brandau, A.M. Bruce, W.N. Catford, I.J. Cullen, Z. Dombrádi, E. Estevez, W. Gelletly, G. Ilie, J. Jolie, G.A. Jones, M. Kmiecik, F.G. Kondev, R. Krücken, S. Lalkovski, Z. Liu, A. Maj, S. Myalski, S. Schwertel, P.M. Walker, E. Werner-Malento, O. Wieland, Phys. Rev. C 79(3), 031305(R) (2009). https://doi.org/10.1103/physrevc.79.031305

    Article  ADS  Google Scholar 

  52. J. Jolie, A. Linnemann, Phys. Rev. C 68(3), 031301(R) (2003). https://doi.org/10.1103/physrevc.68.031301

    Article  ADS  Google Scholar 

  53. J. Borggreen, P. Chowdhury, N. Kebaïli, L. Lundsberg-Nielsen, K. Lützenkirchen, M.B. Nielsen, J. Pedersen, H.D. Rasmussen, Phys. Rev. B 48(23), 17507 (1993). https://doi.org/10.1103/physrevb.48.17507

    Article  ADS  Google Scholar 

  54. J. Pedersen, J. Borggreen, P. Chowdhury, N. Kebaïli, L. Lundsberg-Nielsen, K. Lützenkirchen, M.B. Nielsen, H.D. Rasmussen, Z. Phys. At. Hadrons Nuclei 26(1–4), 281 (1993). https://doi.org/10.1007/bf01429169

    Article  Google Scholar 

  55. J. Pedersen, J. Borggreen, P. Chowdhury, N. Kebaïli, L. Lundsberg-Nielsen, K. Lützenkirchen, M.B. Nielsen, H.D. Rasmussen, Atomic and Nuclear Clusters (Springer, Berlin, 1995). https://doi.org/10.1007/978-3-642-79696-8

    Book  Google Scholar 

  56. H. Haberland, Nucl. Phys. A 649(1–4), 415 (1999). https://doi.org/10.1016/s0375-9474(99)00091-3

    Article  ADS  Google Scholar 

  57. M. Schmidt, H. Haberland, Eur. Phys. J. D 6, 109 (1999). https://doi.org/10.1007/s100530050290

    Article  ADS  Google Scholar 

  58. J. Draayer, Y. Leschber, S. Park, R. Lopez, Comput. Phys. Commun. 56(2), 279 (1989). https://doi.org/10.1016/0010-4655(89)90024-6

    Article  ADS  Google Scholar 

  59. I. Hamamoto, B. Mottelson, Scholarpedia 7(4), 10693 (2012). https://doi.org/10.4249/scholarpedia.10693

    Article  Google Scholar 

  60. W. Greiner, S. Schramm, E. Stein, Quantum Chromodynamics (Springer, Berlin, 2007). https://doi.org/10.1007/978-3-540-48535-3

    Book  MATH  Google Scholar 

  61. R. Machleidt, Phys. Rev. C 63(2), 024001 (2001). https://doi.org/10.1103/physrevc.63.024001

    Article  ADS  Google Scholar 

  62. R.B. Wiringa, V.G.J. Stoks, R. Schiavilla, Phys. Rev. C 51(1), 38 (1995). https://doi.org/10.1103/physrevc.51.38

    Article  ADS  Google Scholar 

  63. V.G.J. Stoks, R.A.M. Klomp, C.P.F. Terheggen, J.J. de Swart, Phys. Rev. C 49(6), 2950 (1994). https://doi.org/10.1103/physrevc.49.2950

    Article  ADS  Google Scholar 

  64. S. Aoki, T. Hatsuda, N. Ishii, Prog. Theor. Phys. 123(1), 89 (2010). https://doi.org/10.1143/ptp.123.89

    Article  ADS  Google Scholar 

  65. A. Arima, Nucl. Phys. 18, 196 (1960). https://doi.org/10.1016/0029-5582(60)90400-4

    Article  Google Scholar 

  66. A. Schmidt, J.R. Pybus, R. Weiss, E.P. Segarra, A. Hrnjic, A. Denniston, O. Hen, E. Piasetzky, L.B. Weinstein, N. Barnea, M. Strikman, A. Larionov, D. Higinbotham, Nature 578, 540 (2020). https://doi.org/10.1038/s41586-020-2021-6

    Article  ADS  Google Scholar 

  67. R. Jastrow, Phys. Rev. 81(2), 165 (1951). https://doi.org/10.1103/physrev.81.165

    Article  ADS  Google Scholar 

  68. W. Pauli, in Writings on Physics and Philosophy (Springer, Berlin, 1994), pp. 165–181

  69. A. Faessler, Prog. Part. Nucl. Phys. 20, 151 (1988). https://doi.org/10.1016/0146-6410(88)90011-7

    Article  ADS  Google Scholar 

  70. F. Fernández, P.G. Ortega, D.R. Entem, Front. Phys. 7, 233 (2020). https://doi.org/10.3389/fphy.2019.00233

    Article  Google Scholar 

  71. E. Wigner, Phys. Rev. 51(2), 106 (1937). https://doi.org/10.1103/physrev.51.106

    Article  ADS  Google Scholar 

  72. J.P. Elliott, A.M. Lane, In Encyclopedia of Physics Handbuch Der Physik (Springer, Berlin Heidelberg, 1957), pp. 241–410

  73. E. Fermi, J. Orear, Nuclear Physics: A Course Given by Enrico Fermi at the University of Chicago. Notes Compiled by Jay Orear (University of Chicago Press, Chicago, 1950)

  74. K.T.R. Davies, S.J. Krieger, Can. J. Phys. 69(1), 62 (1991). https://doi.org/10.1139/p91-010

    Article  ADS  Google Scholar 

  75. M. Harvey, The Nuclear SU(3) Model, Advances in Nuclear Physics, vol. 1, 1st edn. (Plenum Press, New York, 1968)

    Google Scholar 

  76. C.E. Wilsdon, A survey of the nuclear s-d shell, using the su(3) coupling scheme. Ph.D. Thesis, University of Sussex (1965). https://ethos.bl.uk/Home.do. Ethos ID: 477554

  77. J.C. Slater, Phys. Rev. 34(10), 1293 (1929). https://doi.org/10.1103/physrev.34.1293

    Article  ADS  Google Scholar 

  78. P. Ring, P. Schuck, The Nuclear Many-Body Problem (Springer, New York, 1980)

    Book  Google Scholar 

  79. F. Hund, Z. Phys. 105(3–4), 202 (1937). https://doi.org/10.1007/bf01330147

    Article  ADS  Google Scholar 

  80. J.P. Draayer, Algebraic Approaches to Nuclear Structure: Interacting Boson and Fermion Models, Contemporary Concepts in Physics, vol. 6 (Harwood Academic Publishers, New York, 1993)

    Google Scholar 

  81. V.K.B. Kota. arXiv: 1812.01810 (2018)

  82. I. Talmi, Simple Models of Complex Nuclei, LS-Coupling of Protons and Neutrons The SU(4) Scheme, Contemporary Concepts in Physics, vol. 7 (Harwood Academic Publishers, Reading, 1993). https://doi.org/10.1201/9780203739716

    Book  Google Scholar 

  83. P. Franzini, L. Radicati, Phys. Lett. 6(4), 322 (1963). https://doi.org/10.1016/0031-9163(63)90155-0

    Article  ADS  Google Scholar 

  84. P.V. Isacker, O. Juillet, B.K. Gjelsten, Found. Phys. 27(7), 1047 (1997). https://doi.org/10.1007/bf02551152

    Article  ADS  Google Scholar 

  85. P.V. Isacker, D.D. Warner, D.S. Brenner, Phys. Rev. Lett. 74(23), 4607 (1995). https://doi.org/10.1103/physrevlett.74.4607

    Article  ADS  Google Scholar 

  86. R.C. Nayak, V.K.B. Kota, Phys. Rev. C 64(5), 057303 (2001). https://doi.org/10.1103/physrevc.64.057303

    Article  ADS  Google Scholar 

  87. I. Gelfand, M. Zeitlin, Dokl. Akad. Nauk SSSR 71, 825 (1950)

    Google Scholar 

  88. A. Martinou, D. B. Onatsos, N. Minkov, I. E. Assimakis, S. Sarantopoulou, S. Peroulis, in M. Gaidarov, N. Minkov (eds), vol. 37 Nuclear Theory (Heron Press, Sofia, 2018)

  89. P.O. Lipas, Algebraic Approaches to Nuclear Structure: Interacting Boson and Fermion Models, Contemporary Concepts in Physics (Harwood Academic Publishers, Reading, 1993)

    Google Scholar 

  90. C. Cohen-Tannoudji, B. Diu, F. Laloe, Quantum Mechanics, vol. 1, 1st edn. (Wiley, Amsterdam, 1991)

    MATH  Google Scholar 

  91. W. Greiner, B. Müller, Quantum Mechanics, Representations of the Permutation Group and Young Tableaux (Springer, Berlin, 1989). https://doi.org/10.1007/978-3-642-57976-9-9

    Book  Google Scholar 

  92. A. Bohr, B.R. Mottelson, Nuclear Structure, vol. II (World Scientific Publishing Company, Singapore, 1998). https://doi.org/10.1007/978-3-642-57976-9-9

    Book  MATH  Google Scholar 

  93. O. Castaños, J.P. Draayer, Y. Leschber, Z. Phys. A At. Nuclei 329(1), 33 (1988). https://doi.org/10.1007/bf01294813

    Article  ADS  Google Scholar 

  94. D. Bonatsos, A. Martinou, S. Sarantopoulou, I.E. Assimakis, S.K. Peroulis, N. Minkov, EPJ ST 229, 2367 (2020). https://doi.org/10.1140/epjst/e2020-000034-3

    Article  ADS  Google Scholar 

  95. I.E. Assimakis, Algebraic models of nuclear structure with su(3) symmetry. Master’s Thesis, National Technical University of Athens (2015). https://doi.org/10.26240/heal.ntua.3240

  96. D. Bonatsos, A. Martinou, I.E. Assimakis, S.Sarantopoulou, S.Peroulis, , N.Minkov, in Proceedings of the International Workshop on Nuclear Theory, vol. 38, ed. by M. Gaidarov, N.Minkov (Heron Press, Sofia, 2019), p. 129

  97. J. Cseh, Phys. Rev. C 101(5), 054306 (2020). https://doi.org/10.1103/physrevc.101.054306

    Article  ADS  Google Scholar 

  98. R.F. Casten, Nuclear Structure from a Simple Perspective, in Oxford Science Publications (Oxford University Press, Oxford, 2000)

  99. D. Bonatsos, N. Karoussos, P. Raychev, R. Roussev, P. Terziev, Chem. Phys. Lett. 302(5–6), 392 (1999). https://doi.org/10.1016/s0009-2614(99)00199-2

    Article  ADS  Google Scholar 

  100. D. Bonatsos, N. Karoussos, D. Lenis, P.P. Raychev, R.P. Roussev, P.A. Terziev, Phys. Rev. A 62(1), 013203 (2000). https://doi.org/10.1103/physreva.62.013203

    Article  ADS  Google Scholar 

  101. G. Rosensteel, D. Rowe, Ann. Phys. 126(2), 343 (1980). https://doi.org/10.1016/0003-4916(80)90180-3

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andriana Martinou.

Additional information

Communicated by Nicolas Alamanos

This research is co-financed by Greece and the European Union (European Social Fund-ESF) through the Operational Programme “Human Resources Development, Education and Lifelong Learning 2014-2020” in the context of the project “Nucleon Separation Energies” (MIS 5047793)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martinou, A., Bonatsos, D., Karakatsanis, K.E. et al. Why nuclear forces favor the highest weight irreducible representations of the fermionic SU(3) symmetry. Eur. Phys. J. A 57, 83 (2021). https://doi.org/10.1140/epja/s10050-021-00395-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-021-00395-x

Navigation