Skip to main content
Log in

Three-Nucleon Bound States and the Wigner-SU(4) Limit

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

We examine the extent to which the properties of three-nucleon bound states are well-reproduced in the limit that nuclear forces satisfy Wigner’s SU(4) (spin–isospin) symmetry. To do this we compute the charge radii up to next-to-leading order (NLO) in an effective field theory that is an expansion in powers of R/a, with R the range of the nuclear force and a the nucleon–nucleon (\(N\!N\)) scattering lengths. In the Wigner-SU(4) limit, the triton and helium-3 point charge radii are equal. At NLO in the range expansion both are 1.66 fm. Adding the first-order corrections due to the breaking of Wigner symmetry in the \(N\!N\) scattering lengths gives a \({}^3\mathrm {H}\) point charge radius of 1.58 fm, which is remarkably close to the experimental number, \(1.5978\pm 0.040\) fm (Angeli and Marinova in At Data Nucl Data Tables 99:69–95, 2013). For the \({}^3\mathrm {He}\) point charge radius we find 1.70 fm, about 4% away from the experimental value of \(1.77527\pm 0.0054\) fm (Angeli and Marinova 2013). We also examine the Faddeev components that enter the tri-nucleon wave function and find that an expansion of them in powers of the symmetry-breaking parameter converges rapidly. Wigner’s SU(4) symmetry is thus a useful starting point for understanding tri-nucleon bound-state properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Angeli, K. Marinova, Table of experimental nuclear ground state charge radii: An update. At. Data Nucl. Data Tables 99(1), 69–95 (2013)

    Article  ADS  Google Scholar 

  2. E. Braaten, H.-W. Hammer, Universality in few-body systems with large scattering length. Phys. Rep. 428,259–390 (2006). arXiv:cond-mat/0410417

  3. V. Efimov, Energy levels arising form the resonant two-body forces in a three-body system. Phys. Lett. B 33, 563–564 (1970)

    Article  ADS  Google Scholar 

  4. V.N. Efimov, Weakly-bound states of 3 resonantly-interacting particles. Sov. J. Nucl. Phys. 12, 589 (1971)

    Google Scholar 

  5. B. Huang, L.A. Sidorenkov, R. Grimm, J.M. Hutson, Observation of the second triatomic resonance in Efimov’s scenario. Phys. Rev. Lett. 112, 190401 (2014)

    Article  ADS  Google Scholar 

  6. M. Kunitski et al., Observation of the Efimov state of the helium trimer. Science 348, 551–555 (2015). arXiv:1512.02036

    Article  ADS  Google Scholar 

  7. V. Efimov, Qualitative treatment of three-nucleon properties. Nucl. Phys. A 362, 45–70 (1981)

    Article  ADS  Google Scholar 

  8. S.K. Adhikari, A.C. Fonseca, L. Tomio, Fonseca, and Lauro Tomio. Method for resonances and virtual states: Efimov virtual states. Phys. Rev. C 26, 77–82 (1982)

    Article  ADS  Google Scholar 

  9. T. Frederico, I.D. Goldman, A. Delfino, Extension of the minimal three-nucleon model to the unphysical sheet of energy. Phys. Rev. C 37, 497 (1988)

    Article  ADS  Google Scholar 

  10. A. Kievsky, M. Gattobigio, Efimov physics with 1/2 spin-isospin fermions. Few Body Syst. 57, 217 (2016). arXiv:1511.09184

    Article  ADS  Google Scholar 

  11. U. van Kolck, Effective field theory of short range forces. Nucl. Phys. A 645, 273 (1999). arXiv:nucl-th/9808007

    Article  ADS  Google Scholar 

  12. D.B. Kaplan, M.J. Savage, M.B. Wise, A new expansion for nucleon-nucleon interactions. Phys. Lett. B 424, 390 (1998). arXiv:nucl-th/9801034

    Article  ADS  Google Scholar 

  13. D.B. Kaplan, M.J. Savage, M.B. Wise, Two-nucleon systems from effective field theory. Nucl. Phys. B 534, 329 (1998). arXiv:nucl-th/9802075

    Article  ADS  Google Scholar 

  14. M.C. Birse, J.A. McGovern, K.G. Richardson, A renormalization group treatment of two-body scattering. Phys. Lett. B 464, 169 (1999). arXiv:hep-ph/9807302

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. J.-W. Chen, G. Rupak, M.J. Savage, Nucleon-nucleon effective field theory without pions. Nucl. Phys. A 653, 386 (1999). arXiv:nucl-th/9902056

    Article  ADS  Google Scholar 

  16. P.F. Bedaque, H.-W. Hammer, U. van Kolck, Effective theory of the triton. Nucl. Phys. A 676, 357 (2000). arXiv:nucl-th/9906032

    Article  ADS  Google Scholar 

  17. P.F. Bedaque, H.-W. Hammer, U. van Kolck, Renormalization of the three-body system with short range interactions. Phys. Rev. Lett. 82, 463 (1999). arXiv:nucl-th/9809025

    Article  ADS  Google Scholar 

  18. P.F. Bedaque, H.-W. Hammer, U. van Kolck, The three boson system with short range interactions. Nucl. Phys. A 646, 444 (1999). arXiv:nucl-th/9811046

    Article  ADS  Google Scholar 

  19. T. Mehen, I.W. Stewart, M.B. Wise, Wigner symmetry in the limit of large scattering lengths. Phys. Rev. Lett. 83, 931 (1999). arXiv:hep-ph/9902370

    Article  ADS  Google Scholar 

  20. G.V. Skornyakov, K.A. Ter-Martirosian, Three body Problem for short range forces. I. Scattering of Low Energy Neutrons by Deuterons. Sov. Phys. JETP 4, 648 (1957)

    MathSciNet  MATH  Google Scholar 

  21. G. Danilov, On the three-body problem in the case of short-range forces. Sov. Phys. JETP 13, 349 (1961)

    MATH  Google Scholar 

  22. L.H. Thomas, The interaction between a neutron and a proton and the structure of \(^3\)H. Phys. Rev. 47, 903 (1935)

    Article  ADS  MATH  Google Scholar 

  23. H.W. Grießhammer, Naive dimensional analysis for three-body forces without pions. Nucl. Phys. A 760, 110 (2005). arXiv:nucl-th/0502039

    Article  ADS  Google Scholar 

  24. T. Barford, M.C. Birse, Effective theories of scattering with an attractive inverse-square potential and the three-body problem. J. Phys. A 38, 697 (2005). arXiv:nucl-th/0406008

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. M.C. Birse, Renormalisation-group analysis of repulsive three-body systems. J. Phys. A 39, L49 (2006). arXiv:nucl-th/0509031

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. L. Platter, C. Ji, D.R. Phillips, Range corrections to three-body observables near a Feshbach resonance. Phys. Rev. A 79, 022702 (2009). arXiv:0808.1230

    Article  ADS  Google Scholar 

  27. C. Ji, D. Phillips, L. Platter, Beyond universality in three-body recombination:an effective field theory treatment. Europhys. Lett. 92, 13003 (2010). arXiv:1005.1990

    Article  ADS  Google Scholar 

  28. C. Ji, D.R. Phillips, L. Platter, The three-boson system at next-to-leading order in an effective field theory for systems with a large scattering length. Ann. Phys. 327, 1803 (2012). arXiv:1106.3837

    Article  ADS  MATH  Google Scholar 

  29. C. Ji, D.R. Phillips, Effective field theory analysis of three-boson systems at next-to-next-to-leading order. Few Body Syst. 54, 2317 (2013). arXiv:1212.1845

    Article  ADS  Google Scholar 

  30. H.-W. Hammer, T. Mehen, Range corrections to doublet S-wave neutron deuteron scattering. Phys. Lett. B 516, 353 (2001). arXiv:nucl-th/0105072

    Article  ADS  Google Scholar 

  31. P.F. Bedaque, G. Rupak, H.W. Griesshammer, H.-W. Hammer, Low-energy expansion in the three-body system to all orders and the triton channel. Nucl. Phys. A 714, 589 (2003). arXiv:nucl-th/0207034

    Article  ADS  MATH  Google Scholar 

  32. J. Vanasse, Fully perturbative calculation of \(nd\) scattering to next-to-next-to-leading order. Phys. Rev. C 88, 044001 (2013). arXiv:1305.0283

    Article  ADS  Google Scholar 

  33. J. Vanasse, Three-body bound states and the triton charge radius; perturbative corrections to next-to-next-to-leading order in pionless effective field theory. Phys. Rev. C (2017). arXiv:1512.03805 (to appear)

  34. E. Wigner, On the consequences of the symmetry of the nuclear hamiltonian on the spectroscopy of nuclei. Phys. Rev. 51, 106 (1937)

    Article  ADS  MATH  Google Scholar 

  35. E.P. Wigner, On coupling conditions in light nuclei and the lifetimes of beta radioactivities. Phys. Rev. 56, 519 (1939)

    Article  ADS  MATH  Google Scholar 

  36. L.L. Foldy, J. Walecka, Muon capture in nuclei. Nuovo Cim. 34, 1026 (1964)

    Article  ADS  Google Scholar 

  37. G.E. Walker, Muon capture and supermultiplet symmetry breaking in \(^{16}\)O. Phys. Rev. 151, 745 (1966)

    Article  ADS  Google Scholar 

  38. T. DeForest, Muon capture and inelastic electron scattering in \(^{12}\)C and \(^{16}\)O. Phys. Rev. 139, B1217 (1965)

    Article  ADS  Google Scholar 

  39. W. Detmold et al., Unitary limit of two-nucleon interactions in strong magnetic fields. Phys. Rev. Lett. 116, 112301 (2016). arXiv:1508.05884

    Article  ADS  Google Scholar 

  40. E. Braaten, H.-W. Hammer, An infrared renormalization group limit cycle in QCD. Phys. Rev. Lett. 91, 102002 (2003). doi:10.1103/PhysRevLett.91.102002

  41. D.L. Canham, H.-W. Hammer, Universal properties and structure of halo nuclei. Eur. Phys. J. A37, 367 (2008). arXiv:0807.3258

    Article  ADS  Google Scholar 

  42. S. Weinberg, Effective chiral Lagrangians for nucleon-pion interactions and nuclear forces. Nucl. Phys. B 363, 3 (1991)

    Article  ADS  Google Scholar 

  43. H.W. Grießhammer, Improved convergence in the three-nucleon system at very low energies. Nucl. Phys. A 744, 192 (2004). arXiv:nucl-th/0404073

    Article  ADS  Google Scholar 

  44. S.R. Beane, P.F. Bedaque, W.C. Haxton, D.R. Phillips, M.J. Savage, in At The Frontier of Particle Physics, vol. 1, pp. 133–269, ed. by M. Shifman (2000). World Scientific, Singapore arXiv:nucl-th/0008064

  45. D.R. Phillips, G. Rupak, M.J. Savage, Improving the convergence of NN effective field theory. Phys. Lett. B 473, 209 (2000). arXiv:nucl-th/9908054

    Article  ADS  Google Scholar 

  46. R. Amado, Theory of the triton wave function. Phys. Rev. 141, 902 (1966)

    Article  ADS  Google Scholar 

  47. C. Ji, C. Elster, D. Phillips, \(^6\)He nucleus in halo effective field theory. Phys. Rev. C 90, 044004 (2014). arXiv:1405.2394

    Article  ADS  Google Scholar 

  48. S. König, H.W. Grießhammer, H.-W. Hammer, U. van Kolck, Nuclear physics around the unitarity limit. (2016). arXiv:1607.04623

  49. J. Kirscher, D.R. Phillips, Constraining the neutron-neutron scattering length using the effective field theory without explicit pions. Phys. Rev. C 84, 054004 (2011). arXiv:1106.3171

    Article  ADS  Google Scholar 

  50. S. König, H.W. Grießhammer, H.-W. Hammer, U. van Kolck, Effective theory of \({}^{3}\)H and \({}^{3}\)He. J. Phys. G43, 055106 (2016). arXiv:1508.05085

    Article  ADS  Google Scholar 

  51. J. Vanasse (in preparation) (2016)

  52. R.F. Dashen, E.E. Jenkins, A.V. Manohar, The 1/\(N_{c}\) expansion for baryons. Phys. Rev. D 49, 4713 (1994). arXiv:hep-ph/9310379 [Erratum: Phys. Rev. D51, 2489 (1995)]

  53. D.B. Kaplan, M.J. Savage, The spin-flavor dependence of nuclear forces from large-\(N\) QCD. Phys. Lett. B 365, 244 (1996). arXiv:hep-ph/9509371

    Article  ADS  Google Scholar 

  54. D.B. Kaplan, A.V. Manohar, The Nucleon-nucleon potential in the 1/\(N_{c}\) expansion. Phys. Rev. C 56, 76 (1997). arXiv:nucl-th/9612021

    Article  ADS  Google Scholar 

  55. D.R. Phillips, C. Schat, Three-nucleon forces in the \(1/N_c\) expansion. Phys. Rev. C 88, 034002 (2013). arXiv:1307.6274

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel R. Phillips.

Additional information

This article belongs to the special issue “30th anniversary of Few-Body Systems”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vanasse, J., Phillips, D.R. Three-Nucleon Bound States and the Wigner-SU(4) Limit. Few-Body Syst 58, 26 (2017). https://doi.org/10.1007/s00601-016-1173-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-016-1173-2

Navigation