Skip to main content

Advertisement

Log in

Signature splitting in the positive parity bands of \(^{{127}}\hbox {Xe}\)

  • Regular Article – Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Rotational bands built on positive parity \( s_{1/2} \), \( d_{3/2} \), and \( g_{7/2} \) valence neutron orbitals in \( ^{127}\hbox {Xe}\) have been investigated via in-beam \( \gamma \) ray spectroscopy. Excited states belonging to these one-quasineutron bands were populated via \(^{122} \hbox {Sn}( ^{9} \hbox {Be}, \hbox {4n} \gamma \)) fusion-evaporation reaction at a beam energy of 48 MeV. The level scheme has been updated by extending the low-lying rotational bands up to higher spin states, as well as, by assigning the spin/parity of the constituting energy levels. Signature splitting of low-j\( \nu s_{1/2} \), \( \nu d_{3/2} \) and high-j\( \nu g_{7/2} \) bands have been discussed in comparison to the neighbouring nuclei. Theoretical Modified Particle Rotor Model (MPRM) calculations have been carried out in order to study the microscopic structure of these bands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All data generated during this study are contained in this published article.]

References

  1. A. Bohr, B.R. Mottelson, Nuclear Structure, vol. II (Benjamin, New York, 1975)

    MATH  Google Scholar 

  2. S. Frauendorf, Rev. Mod. Phys. 73, 463 (2001)

    Article  ADS  Google Scholar 

  3. M. Gai et al., Phys. Rev. C 26, 1101 (1982)

    Article  ADS  Google Scholar 

  4. R. Goswami et al., Phys. Rev. C 47, 1013 (1993)

    Article  ADS  Google Scholar 

  5. H. Sharma et al., Phys. Rev. C 63, 014313 (2000)

    Article  ADS  Google Scholar 

  6. S. Chakraborty et al., Eur. Phys. J. A 54, 112 (2018)

    Article  ADS  Google Scholar 

  7. D. Singh et al., Nucl. Phys. A 952, 41 (2016)

    Article  ADS  Google Scholar 

  8. D.B. Fossan et al., Phys. Rev. C 15, 1732 (1977)

    Article  ADS  Google Scholar 

  9. R. Bengtsson et al., Nucl. Phys. A 415, 189 (1984)

    Article  ADS  Google Scholar 

  10. B.E. Chi, Nucl. Phys. 83, 97 (1966)

    Article  Google Scholar 

  11. J.M. Sears et al., Phys. Rev. C 57, 2991 (1998)

    Article  ADS  Google Scholar 

  12. S. Törmänen et al., Nucl. Phys. A 572, 417 (1994)

    Article  ADS  Google Scholar 

  13. H. Timmers et al., J. Phys. G 20, 287 (1994)

    Article  ADS  Google Scholar 

  14. S. Nag et al., Phys. Rev. C 94, 034307 (2016)

    Article  ADS  Google Scholar 

  15. C. Rønn Hansen et al., Phys. Rev. C 76, 034311 (2007)

    Article  ADS  Google Scholar 

  16. J.N. Orce et al., Phys. Rev. C 74, 034318 (2006)

    Article  ADS  Google Scholar 

  17. Z. Liu et al., Eur. Phys. J. A 1, 125 (1998)

    Article  ADS  Google Scholar 

  18. H.C. Scraggs et al., Nucl. Phys. A 640, 337 (1998)

    Article  ADS  Google Scholar 

  19. J. Timar et al., J. Phys. G 21, 783 (1995)

    Article  ADS  Google Scholar 

  20. A. Luukko et al., Nucl. Phys. A 357, 319 (1981)

    Article  ADS  Google Scholar 

  21. A. Al-Khatib et al., Phys. Rev. C 83, 024306 (2011)

    Article  ADS  Google Scholar 

  22. W. Urban et al., Z. Phys. A 320, 327 (1985)

    Article  ADS  Google Scholar 

  23. Y. Huang et al., Phys. Rev. C 93, 064315 (2016)

    Article  ADS  Google Scholar 

  24. H. Helppi et al., Nucl. Phys. A 357, 333 (1981)

    Article  ADS  Google Scholar 

  25. C.B. Moon et al., Phys. Rev. C 76, 067301 (2007)

    Article  ADS  Google Scholar 

  26. A. Gelberg et al., Nucl. Phys. A 557, 439 (1993)

    Article  ADS  Google Scholar 

  27. V. Barci et al., Nucl. Phys. A 383, 309 (1982)

    Article  ADS  Google Scholar 

  28. H. Helppi et al., Nucl. Phys. A 332, 183 (1979)

    Article  ADS  Google Scholar 

  29. G.K. Mehta, A.P. Patro, Nucl. Instrum. Methods Phys. Res. Sect. A 268, 334 (1988)

    Article  ADS  Google Scholar 

  30. S. Muralithar et al., Nucl. Instrum. Methods Phys. Res. Sect. A 622, 281 (2010)

    Article  ADS  Google Scholar 

  31. S. Chakraborty et al., Phys. Scr. 93, 115302 (2018)

    Article  ADS  Google Scholar 

  32. B.P.A. Kumar et al., A High Speed Distributed Data Acquisition System, in Proc. DAE Symp. Nucl. Phys.44B, p. 390 (2001)

  33. R. Bhowmik et al., INGAsort - A new program for the analysis of multi detector array, in Proc. DAE Symp. Nucl. Phys., 44B, p. 422 (2001)

  34. D.C. Radford, Nucl. Instrum. Methods Phys. Res. Sect. A 361, 297 (1995)

    ADS  Google Scholar 

  35. S. Chakraborty et al., Braz. J. Phys. 47, 406 (2017)

    Article  ADS  Google Scholar 

  36. S.S. Tiwary et al., Eur. Phys. J. A 55, 163 (2019)

    Article  ADS  Google Scholar 

  37. S. Chakraborty et al., EPL 125, 52001 (2019)

    Article  ADS  Google Scholar 

  38. S. Chakraborty et al., J. Phys. G 47, 015103 (2020)

    Article  ADS  Google Scholar 

  39. A.D. Irving et al., J. Phys. G 9, 1245 (1983)

    Article  ADS  Google Scholar 

  40. National Nuclear Data Center, Brookhaven National Laboratory, Upton, NY, USA. https://www.nndc.bnl.gov/

  41. S. Chakraborty et al., EPL 121, 42001 (2018)

    Article  ADS  Google Scholar 

  42. S. Chakraborty et al., Phys. Rev. C 97, 054311 (2018)

    Article  ADS  Google Scholar 

  43. T. Lönnroth et al., Phys. Scr. 27, 228 (1983)

    Article  ADS  Google Scholar 

  44. A.D. Ayangeakaa et al., Phys. Rev. C 93, 054317 (2016)

    Article  ADS  Google Scholar 

  45. E.S. Paul et al., Phys. Rev. C 80, 054312 (2009)

    Article  ADS  Google Scholar 

  46. S. Juutinen et al., Phys. Rev. C 51, 1699 (1995)

    Article  ADS  Google Scholar 

  47. R. Ma et al., Phys. Rev. C 41, 717 (1990)

    Article  ADS  Google Scholar 

  48. A.P. Byrne et al., Nucl. Phys. A 548, 131 (1992)

    Article  ADS  Google Scholar 

  49. D. Ward et al., Nucl. Phys. A 539, 547 (1992)

    Article  ADS  Google Scholar 

  50. V. Modamio et al., Phys. Rev. C 81, 054304 (2010)

    Article  ADS  Google Scholar 

  51. P. Kemnitz et al., Nucl. Phys. A 245, 221 (1975)

    Article  ADS  Google Scholar 

  52. C. Foin et al., Phys. Rev. Lett. 35, 1697 (1975)

    Article  ADS  Google Scholar 

  53. M.A. Asgar et al., Phys. Rev. C 95, 031304(R) (2017)

  54. S. Chakraborty et al., Nucl. Phys. A 996, 121687 (2020)

    Article  Google Scholar 

  55. S. Modi et al., Phys. Rev. C 95, 024326 (2017)

    Article  ADS  Google Scholar 

  56. P. Möller et al., At. Data Nucl. Data Tables 59, 185 (1995)

    Article  ADS  Google Scholar 

  57. S. Modi et al., Phys. Rev. C 95, 054323 (2017)

    Article  ADS  Google Scholar 

  58. S. Modi et al., Phys. Rev. C 96, 064308 (2017)

    Article  ADS  Google Scholar 

  59. S.G. Nilsson, I. Ragnarsson, Shapes and Shells in Nuclear Structure (Cambridge University Press, Cambridge, 1995)

    Google Scholar 

Download references

Acknowledgements

Authors are thankful to the staff of target lab and pelletron accelerator facility of IUAC, New Delhi. The efforts from INGA collaboration is thankfully acknowledged. The INGA facility is partly funded by the Department of Science and Technology of Government of India vide project no. IR/S2/PF-03/2003-I. The first author (S.C.) acknowledges the Council of Scientific & Industrial Research (CSIR), India, for Senior Research Fellowship (file no. 9/13(662)/2017-EMR-I).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. P. Sharma.

Additional information

Communicated by S. Bhattacharya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, S., Sharma, H.P., Tiwary, S.S. et al. Signature splitting in the positive parity bands of \(^{{127}}\hbox {Xe}\). Eur. Phys. J. A 56, 50 (2020). https://doi.org/10.1140/epja/s10050-020-00066-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-020-00066-3

Navigation