Skip to main content
Log in

Particle-phonon coupling: Understanding the variety of excitations in the low-lying spectra of odd nuclei

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

The couplings between particles and vibrations in atomic nuclei play a key role in the understanding of various nuclear properties, as it has been highlighted along several decades. In this contribution, after a short survey of the early discoveries of particle-phonon multiplets around the 208Pb region, we review recent experiments and theoretical attempts to understand low-energy spectra of odd-nuclei close to magic and semi-magic cores, where particle-phonon coupling phenomena play a significant role. The focus will be on nuclei around 48Ca , 132Sn , 208Pb and neutron-rich Ni isotopes. Special emphasis will be given to experimental techniques based on high-resolution \( \gamma\)-spectroscopy and to recent theoretical developments aimed at disentangling particle-phonon coupled states and other more hybrid configurations, using the Hybrid Configuration Mixing model that has been recently proposed by the Milano group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V.G. Soloviev, The Theory of Atomic Nuclei: Quasiparticles and Phonons (Institute of Physics Publishing, Bristol and Philadelphia, 1975)

  2. A. Bohr, B.R. Mottelson, Nuclear Structure, Vol. II (W.A. Benjamin, New York, 1975)

  3. P.F. Bortignon, R.A. Broglia, D.R. Bes, R. Liotta, Phys. Rep. 30, 305 (1977)

    ADS  Google Scholar 

  4. I. Hamamoto, Phys. Rep. 10, 63 (1974)

    ADS  Google Scholar 

  5. P.F. Bortignon, R.A. Broglia, D.R. Bes, R. Liotta, V. Paar, Phys. Lett. B 64, 24 (1976)

    ADS  Google Scholar 

  6. P. Kleinheinz, Phys. Scr. 24, 236 (1981)

    ADS  Google Scholar 

  7. P. Kleinheinz et al., Phys. Rev. Lett. 48, 1457 (1982)

    ADS  Google Scholar 

  8. N. Pietralla et al., Phys. Lett. B 681, 134 (2009)

    ADS  Google Scholar 

  9. M. Rejmund et al., Eur. Phys. J. A 8, 161 (2000)

    ADS  Google Scholar 

  10. B. Fornal et al., Phys. Rev. Lett. 87, 212501 (2001)

    ADS  Google Scholar 

  11. G.F. Bertsch, P.F. Bortignon, R.A. Broglia, C.H. Dasso, Phys. Lett. B 80, 161 (1979)

    ADS  Google Scholar 

  12. P.F. Bortignon, R.A. Broglia, Nucl. Phys. A 371, 405 (1981)

    ADS  Google Scholar 

  13. G.F. Bertsch, P.F. Bortignon, R.A. Broglia, Rev. Mod. Phys. 55, 287 (1983)

    ADS  Google Scholar 

  14. P.F. Bortignon, R.A. Broglia, G.F. Bertsch, Nucl. Phys. A 460, 149 (1986)

    ADS  Google Scholar 

  15. P.F. Bortignon, A. Bracco, R.A. Broglia, Giant Resonances: Nuclear Structure at Finite Temperature (Harwood Academic, New York, 1998)

  16. V.Yu. Ponomarev, P.F. Bortignon, R.A. Broglia, V.V. Voronov, Phys. Rev. Lett. 85, 1400 (2000)

    ADS  Google Scholar 

  17. T. Aumann, P.F. Bortignon, H. Emling, Annu. Rev. Nucl. Part. Sci. 48, 351 (1998)

    ADS  Google Scholar 

  18. R.A. Broglia, G. Colò, G. Onida, H.E. Roman, Solid State Physics of Finite Systems (Springer, 2004)

  19. M. Baldo, P.F. Bortignon, Lett. Nuovo Cimento 14, 587 (1975)

    Google Scholar 

  20. M. Baldo, P.F. Bortignon, G. Colò, D. Rizzo, L. Sciacchitano, J. Phys. G: Nucl. Part. Phys. 42, 085109 (2015)

    ADS  Google Scholar 

  21. G. Colò, N. Van Giai, P.F. Bortignon, R.A. Broglia, Phys. Rev. C 50, 1496 (1994)

    ADS  Google Scholar 

  22. G. Colò, H. Sagawa, P.F. Bortignon, Phys. Rev. C 82, 064307 (2010)

    ADS  Google Scholar 

  23. Y.F. Niu, G. Colò, E. Vigezzi, Phys. Rev. C 90, 054328 (2014)

    ADS  Google Scholar 

  24. Y.F. Niu et al., Phys. Rev. Lett. 114, 142501 (2015)

    ADS  Google Scholar 

  25. G. Colò, P.F. Bortignon, G. Bocchi, Phys. Rev. C 95, 034303 (2017)

    ADS  Google Scholar 

  26. D. Lacroix, 2009 International Joliot-Curie School (EJC2009) arXiv:1001.5001[nucl-th]

  27. G.F. Bertsch, D.J. Dean, W. Nazarewicz, SciDAC Rev. 6, 42 (2007)

    Google Scholar 

  28. S. Bottoni, G. Colò, P.F. Bortignon, Y. Niu, in preparation

  29. J. Rowe, J. Math. Phys. 10, 1774 (1969)

    ADS  Google Scholar 

  30. G. Bocchi et al., Phys. Rev. C 89, 054302 (2014)

    ADS  Google Scholar 

  31. C.R. Niţă et al., Phys. Rev. C 89, 064314 (2014)

    ADS  Google Scholar 

  32. M. Asai et al., Phys. Rev. C 62, 054313 (2000)

    ADS  Google Scholar 

  33. D. Bucurescu, M. Ivascu, G. Semenescu, M. Titirici, Nucl. Phys. A 189, 577 (1972)

    ADS  Google Scholar 

  34. R.M. Britton, D.L. Watson, Nucl. Phys. A 272, 91 (1976)

    ADS  Google Scholar 

  35. B.G. Harvey et al., Nucl. Phys. 70, 305 (1965)

    Google Scholar 

  36. A.L. McCarthy, G.M. Crawley, Phys. Rev. 150, 935 (1966)

    ADS  Google Scholar 

  37. Y. Iwasaki et al., Phys. Rev. C 20, 861 (1979)

    ADS  Google Scholar 

  38. A.A.C. Klaasse, V. Paar, Nucl. Phys. A 297, 45 (1978)

    ADS  Google Scholar 

  39. A.G. Hartas et al., Nucl. Phys. A 279, 413 (1977)

    ADS  Google Scholar 

  40. R.H. Speak, At. Data Nucl. Data Tables 42, 55 (1989)

    ADS  Google Scholar 

  41. D. Bucurescu et al., Nucl. Instrum. Methods Phys. Res. A 837, 1 (2016)

    ADS  Google Scholar 

  42. C.J. Chiara et al., Phys. Rev. C 85, 0234309 (2012)

    Google Scholar 

  43. G. Colò et al., Nucl. Phys. A 788, 173c (2007)

    ADS  Google Scholar 

  44. G. Colò et al., Comput. Phys. Commun. 184, 142 (2013)

    ADS  MathSciNet  Google Scholar 

  45. B.A. Brown, Phys. Rev. C 58, 220 (1998)

    ADS  Google Scholar 

  46. E. Chabanat, P. Bonche, P. Haensel, J. Meyer, R. Schaeffer, Nucl. Phys. A 643, 441 (1998)

    Google Scholar 

  47. S. Leoni et al., Phys. Rev. Lett. 118, 162502 (2017)

    ADS  Google Scholar 

  48. A.I. Morales et al., Phys. Lett. B 765, 328 (2017)

    ADS  Google Scholar 

  49. C.J. Chiara et al., Phys. Rev. C 86, 041304(R) (2012)

    ADS  Google Scholar 

  50. C.J. Prokop et al., Phys. Rev. C 92, 061302(R) (2015)

    ADS  Google Scholar 

  51. R.A. Einstein et al., Phys. Rev. 188, 1815 (1969)

    ADS  Google Scholar 

  52. D. Montanari et al., Phys. Lett. B 697, 288 (2011)

    ADS  Google Scholar 

  53. D. Montanari et al., Phys. Rev. C 85, 044301 (2012)

    ADS  Google Scholar 

  54. D. Montanari et al., Phys. Rev. C 84, 054613 (2011)

    ADS  Google Scholar 

  55. Nuclear Data Base, http://www.nndc.bnl.gov/nudat2/

  56. R. Broda, J. Phys. G: Nucl. Part. Phys. 32, R151 (2006)

    ADS  Google Scholar 

  57. A.M. Stefanini et al., Nucl. Phys. A 701, 217c (2002)

    Google Scholar 

  58. D. Montanari et al., Eur. Phys. J. A 47, 4 (2011)

    ADS  Google Scholar 

  59. A. Gadea et al., Eur. Phys. J. A 20, 193 (2004)

    Google Scholar 

  60. G. Bocchi et al., Acta Phys. Pol. B 46, 647 (2015)

    ADS  Google Scholar 

  61. S. Bottoni et al., EPJ Web of Conferences 193, 05001 (2018)

    Google Scholar 

  62. N. Cieplicka-Orynczak et al., Acta Phys. Pol. B 48, 577 (2017)

    ADS  Google Scholar 

  63. S. Paschalis et al., Nucl. Instrum. Methods Phys. Res. A 709, 44 (2013)

    ADS  Google Scholar 

  64. H.L. Crawford et al., Phys. Rev. C 95, 064317 (2017)

    ADS  Google Scholar 

  65. A. Gade et al., Phys. Rev. C 93, 031601 (2016)

    ADS  Google Scholar 

  66. P. Bhattacharyya et al., Phys. Rev. Lett. 87, 062502 (2001)

    ADS  Google Scholar 

  67. D. Rosiak et al., Phys. Rev. Lett. 121, 252501 (2018)

    ADS  Google Scholar 

  68. G. Bocchi et al., Phys. Lett. B 760, 273 (2016)

    ADS  Google Scholar 

  69. S. Bottoni et al., Acta Phys. Pol. B 50, 285 (2019)

    ADS  Google Scholar 

  70. M. Jentschel et al., J. Instrum. 12, 11003 (2017)

    Google Scholar 

  71. J.R. Erskine, W.W. Buechner, H.A. Enge, Phys. Rev. 128, 720 (1962)

    ADS  Google Scholar 

  72. N. Cieplicka-Orynczak et al., Phys. Rev. C 93, 054302 (2016)

    ADS  Google Scholar 

  73. N. Cieplicka-Orynczak et al., Phys. Rev. C 94, 014311 (2016)

    ADS  Google Scholar 

  74. B.A. Brown, MSU-NSCL report number 1289 (unpublished)

  75. G. Herling, T.T.S. Kuo, Nucl. Phys. A 181, 113 (1972)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Leoni.

Additional information

Communicated by N. Alamanos

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors' comment: All data generated during this study are contained in this published article.]

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leoni, S., Bracco, A., Colò, G. et al. Particle-phonon coupling: Understanding the variety of excitations in the low-lying spectra of odd nuclei. Eur. Phys. J. A 55, 247 (2019). https://doi.org/10.1140/epja/i2019-12925-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2019-12925-9

Navigation