Skip to main content
Log in

Energy–density functional plus quasiparticle–phonon model theory as a powerful tool for nuclear structure and astrophysics

  • Nuclei
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

During the last decade, a theoretical method based on the energy–density functional theory and quasiparticle–phonon model, including up to three-phonon configurations was developed. The main advantages of themethod are that it incorporates a self-consistentmean-field and multi-configuration mixing which are found of crucial importance for systematic investigations of nuclear low-energy excitations, pygmy and giant resonances in an unified way. In particular, the theoretical approach has been proven to be very successful in predictions of new modes of excitations, namely pygmy quadrupole resonance which is also lately experimentally observed. Recently, our microscopically obtained dipole strength functions are implemented in predictions of nucleon-capture reaction rates of astrophysical importance. A comparison to available experimental data is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Tanihata, H. Hamagaki, O. Hashimoto, et al., Phys. Rev. Lett. 55, 2676 (1985).

    Article  ADS  Google Scholar 

  2. Y. Suzuki, K. Ikeda, and H. Sato, Prog. Theor. Phys. 83, 180 (1990).

    Article  ADS  Google Scholar 

  3. P. Van Isacker, M. A. Nagarajan, and D. D. Warner, Phys. Rev. C 45, R13(R) (1992).

    Article  ADS  Google Scholar 

  4. N. Tsoneva, H. Lenske, and Ch. Stoyanov, Phys. Lett. B 586, 213 (2004).

    Article  ADS  Google Scholar 

  5. N. Tsoneva and H. Lenske, Phys. Rev. C 77, 024321 (2008).

    Article  ADS  Google Scholar 

  6. D. Vretenar, N. Paar, P. Ring, and G. A. Lalalzissis, Nucl. Phys. A 692, 496 (2001).

    Article  ADS  Google Scholar 

  7. T. Hartmann, M. Babilon, S. Kamerdzhiev, et al., Phys. Rev. Lett. 93, 192501 (2004).

    Article  ADS  Google Scholar 

  8. D. Sarchi, P. F. Bortignon, and G. Colò, Phys. Lett. B 601, 27 (2004).

    Article  ADS  Google Scholar 

  9. D. Savran, T. Aumann, and A. Zilges, Prog. Part. Nucl. Phys. 70, 210 (2013).

    Article  ADS  Google Scholar 

  10. S. Volz, N. Tsoneva, M. Babilon, M. Elvers, J. Hasper, R.-D. Herzberg, H. Lenske, K. Lindenberg, D. Savran, and A. Zilges, Nucl. Phys. A 779, 1 (2006).

    Article  ADS  Google Scholar 

  11. R. Schwengner, G. Rusev, N. Tsoneva, N. Benouaret, R. Beyer, M. Erhard, E. Grosse, A. R. Junghans, J. Klug, K. Kosev, H. Lenske, C. Nair, K. D. Schilling, and A. Wagner, Phys. Rev. C 78, 064314 (2008).

    Article  ADS  Google Scholar 

  12. R. Schwengner, R. Massarczyk, G. Rusev, N. Tsoneva, D. Bemmerer, R. Beyer, R. Hannaske, A. R. Junghans, J. H. Kelley, E. Kwan, H. Lenske, M. Marta, R. Raut, K. D. Schilling, A. Tonchev, W. Tornow, and A. Wagner, Phys. Rev. C 87, 024306 (2013).

    Article  ADS  Google Scholar 

  13. B. L. Berman, At. Data Nucl. Data Tables 15, 319 (1975).

    Article  ADS  Google Scholar 

  14. A. J. Koning and D. Rochman, Nucl. Data Sheets 113, 2841 (2012).

    Article  ADS  Google Scholar 

  15. S. Goriely, Phys. Lett. B 436, 10 (1998).

    Article  ADS  Google Scholar 

  16. R. Raut, A. P. Tonchev, G. Rusev, W. Tornow, C. Iliadis, M. Lugaro, J. Buntain, S. Goriely, J. H. Kelley, R. Schwengner, A. Banu, and N. Tsoneva, Phys. Rev. Lett. 111, 112501 (2013).

    Article  ADS  Google Scholar 

  17. N. Tsoneva, S. Goriely, H. Lenske, and R. Schwengner, Phys. Rev. C 91, 044318 (2015).

    Article  ADS  Google Scholar 

  18. S. E. A. Orrigo, H. Lenske, F. Cappuzzello, et al., Phys. Lett. B 633, 469 (2006).

    Article  ADS  Google Scholar 

  19. V. G. Soloviev, Theory of Complex Nuclei (Pergamon Press, Oxford, 1976).

    Google Scholar 

  20. B. Özel-Tashenov, J. Enders, H. Lenske, A. M. Krumbholz, E. Litvinova, P. von Neumann-Cosel, I. Poltoratska, A. Richter, G. Rusev, D. Savran, and N. Tsoneva, Phys. Rev. C 90, 024304 (2014).

    Article  ADS  Google Scholar 

  21. A. M. Krumbholz et al., Phys. Lett. B 744, 7 (2015).

    Article  ADS  Google Scholar 

  22. N. Tsoneva and H. Lenske, Phys. Lett. B 695, 174 (2011).

    Article  ADS  Google Scholar 

  23. L. Pellegri, A. Bracco, N. Tsoneva et al., Phys. Rev. C 92, 014330 (2015).

    Article  ADS  Google Scholar 

  24. M. Spieker, N. Tsoneva, V. Derya, J. Endres, D. Savran, M. N. Harakeh, S. Harissopulos, R.-D. Herzberg, A. Lagoyannis, H. Lenske, N. Pietralla, L. Popescu, M. Scheck, F. Schluter, K. Sonnabend, V. I. Stoica, H. J. Wortche, A. Zilges, Phys. Lett. B 752, 102 (2016).

    Article  ADS  Google Scholar 

  25. W. Kohn and I. J. Sham, Phys. Rev. 140, A1133 (1965).

    Article  ADS  MathSciNet  Google Scholar 

  26. P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).

    Article  ADS  Google Scholar 

  27. D. Vautherin and D. M. Brink, Phys. Rev. C 5, 626 (1972).

    Article  ADS  Google Scholar 

  28. F. Hofmann and H. Lenske, Phys. Rev. C 57, 2281 (1998).

    Article  ADS  Google Scholar 

  29. M. Stoitsov, M. Kortelainen, S. K. Bogner, et al., Phys. Rev. C 82, 054307 (2010).

    Article  ADS  Google Scholar 

  30. M. Kortelainen, T. Lesinski, J. Moré, et al., Phys. Rev. C 82, 024313 (2010).

    Article  ADS  Google Scholar 

  31. http://www.unedf.org/.

  32. H. Lenske and C. Fuchs, Phys. Lett. B 345, 355 (1995).

    Article  ADS  Google Scholar 

  33. C. Fuchs, H. Lenske, and H. H. Wolter, Phys. Rev. C 52, 3043 (1995).

    Article  ADS  Google Scholar 

  34. F. Hofmann, C. M. Keil, and H. Lenske, Phys. Rev. C 64, 034314 (2001).

    Article  ADS  Google Scholar 

  35. H. Lenske, Lect. Notes Phys. 641, 147 (2004).

    Article  ADS  Google Scholar 

  36. S. A. Fayans, S. V. Tolokonnikov, E. L. Trykov, and D. Zawischa, Nucl. Phys. A 676, 49 (2000).

    Article  ADS  Google Scholar 

  37. S. Kamerdzhiev, J. Speth, and G. Tertychny, Phys. Rep. 393, 1 (2004).

    Article  ADS  Google Scholar 

  38. E. E. Saperstein and S. V. Tolokonnikov, Yad. Fiz. 74, 1306 (2011) [Phys. Atom. Nucl. 74, 1277 (2011)].

    Google Scholar 

  39. L. D. Landau, Sov. Phys. JETP 3, 920 (1956); 5, 101 (1957); 8, 70 (1959).

    Google Scholar 

  40. A. B. Migdal, Theory of Finite Fermi Systems and Applications to Atomic Nuclei (Wiley, New York, 1967).

    Google Scholar 

  41. G. Audi, M. Wang, A. H. Wapstra, et al., Chin. Phys. C 36, 1287 (2012).

    Article  Google Scholar 

  42. A. Krasznahorkay et al., Phys. Rev. Lett. 82, 3216 (1999).

    Article  ADS  Google Scholar 

  43. A. Krasznahorkay et al., in Proceedings of the International Nuclear Physics Conference (INPC2001), Berkeley, USA, 2001, Ed. by E. Norman, AIP Conf. Proc. 610, 751 (2002).

  44. V. Yu. Ponomarev, Ch. Stoyanov, N. Tsoneva, and M. Grinberg, Nucl. Phys. A 635, 470 (1998).

    Article  ADS  Google Scholar 

  45. A. I. Vdovin and V. G. Soloviev, Fiz. Elem. Chastits At. Yandra 14, 237 (1983) [Sov. J. Part. Nucl. 14, 99 (1983)].

    Google Scholar 

  46. M. Grinberg and Ch. Stoyanov, Nucl. Phys. A 573, 231 (1994).

    Article  ADS  Google Scholar 

  47. M. Grinberg, Ch. Stoyanov, and N. Tsoneva, Fiz. Elem. Chastits At. Yadra 29, 1456 (1998) [Phys. Part. Nucl. 29, 606 (1998)].

    Google Scholar 

  48. A. P. Tonchev, S. L. Hammond, H. J. Karwowski, J. H. Kelley, E. Kwan, H. Lenske, G. Rusev, W. Tornow, and N. Tsoneva, Phys. Rev. Lett. 104, 072501 (2010).

    Article  ADS  Google Scholar 

  49. G. Rusev, N. Tsoneva, F. Dnau, S. Frauendorf, R. Schwengner, A. P. Tonchev, A. S. Adekola, S. L. Hammond, C. Huibregtse, J. H. Kelley, E. Kwan, H. Lenske, W. Tornow, and A. Wagner, Phys. Rev. Lett. 110, 022503 (2013).

    Article  ADS  Google Scholar 

  50. Krishichayan, M. Bhike, W. Tornow, G. Rusev, A. P. Tonchev, N. Tsoneva, and H. Lenske, Phys. Rev. C 91, 044328 (2015).

    Article  ADS  Google Scholar 

  51. A. Arima and H. Horie, Prog. Theor. Phys. 11, 509 (1954).

    Article  ADS  Google Scholar 

  52. A. Bohr and B. R. Mottelson, Nuclear Structure (Benjamin, New York, 1975), Vol. 2.

    MATH  Google Scholar 

  53. W. Weise, Prog. Part. Nucl. Phys. 11, 123 (1984).

    Article  ADS  Google Scholar 

  54. I. S. Towner, Phys. Rep. 155, 263 (1987).

    Article  ADS  Google Scholar 

  55. V. V. Voronov and V. G. Soloviev, Fiz. Elem. Chastits At. Yadra 14, 1380 (1983) [Sov. J. Part. Nucl. 14, 583 (1983)].

    Google Scholar 

  56. N. Pietralla et al., Phys. Rev. Lett. 88, 012502 (2002).

    Article  ADS  Google Scholar 

  57. M. N. Haraken and A. van der Woude, Giant Resonances (Clarendon Press, Oxford, 2001).

    Google Scholar 

  58. N. Tsoneva and H. Lenske, Nucl. Phys. Rev. 32, 129 (2015).

    Google Scholar 

  59. H. Pai et al., Phys. Rev. C 88, 054316 (2013).

    Article  ADS  Google Scholar 

  60. A. P. Severyukhin, V. V. Voronov, and N. Van Giai, Phys. Rev. C 77 024322 (2008).

    Article  ADS  Google Scholar 

  61. A. Ekström et al., Phys. Rev. Lett. 101, 012502 (2008).

    Article  ADS  Google Scholar 

  62. A. Bracco, F. C. L Crespi, and E. G. Lanza, Eur. Phys. J. A 51, 99 (2015).

    Article  ADS  Google Scholar 

  63. ENSDF, NNDC Online Data Service, ENSDF database. http://www.nndc.bnl.gov/ensdf/.

  64. T. Hashimoto et al., Phys. Rev. C 92, 031305(R) (2015).

    Article  ADS  Google Scholar 

  65. A. Avdeenkov, S. Goriely, S. Kamerdzhiev, and S. Krewald, Phys. Rev. C 83, 064316 (2011).

    Article  ADS  Google Scholar 

  66. E. Litvinova, H. P. Loens, K. Langanke, et al., Nucl. Phys. A 823, 26 (2009).

    Article  ADS  Google Scholar 

  67. http://www.talys.eu/home/.

  68. M. Arnould, S. Goriely, and K. Takahashi, Phys. Rep. 450, 97 (2007).

    Article  ADS  Google Scholar 

  69. Z. Y. Bao, H. Beer, F. Käppeler, et al., At. Data Nucl. Data Tables 76, 70 (2000).

    Article  ADS  Google Scholar 

  70. S. Goriely, S. Hilaire, and A. J. Koning, Phys. Rev. C 78, 064307 (2008).

    Article  ADS  Google Scholar 

  71. A. J. Koning, S. Hilaire, and S. Goriely, Nucl. Phys. A 810, 13 (2008).

    Article  ADS  Google Scholar 

  72. S. Hilaire, M. Girod, S. Goriely, and A. J. Koning, Phys. Rev. C 86, 064317 (2012).

    Article  ADS  Google Scholar 

  73. S. Harissopulos, A. Spyrou, A. Lagoyannis, et al., Phys. Rev. C 87, 025806 (2013).

    Article  ADS  Google Scholar 

  74. L. Netterdon, A. Endres, S. Goriely, et al., Phys. Lett. B 744, 358 (2015).

    Article  ADS  Google Scholar 

  75. A. J. Koning and J. P. Delaroche, Nucl. Phys. A 713, 231 (2003).

    Article  ADS  Google Scholar 

  76. F. Giacoppo, et al., Phys. Rev. Lett. (to be submitted).

  77. A. M. Goryachev and G. N. Zalesny, Yad. Fiz. 27, 1479 (1978) [Sov. J. Nucl. Phys. 27, 779 (1978)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Tsoneva.

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsoneva, N., Lenske, H. Energy–density functional plus quasiparticle–phonon model theory as a powerful tool for nuclear structure and astrophysics. Phys. Atom. Nuclei 79, 885–903 (2016). https://doi.org/10.1134/S1063778816060247

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778816060247

Navigation