Skip to main content
Log in

Analysis of excited quark propagator effects on neutron charge form factor

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

The charge form factor and charge radius of neutron are investigated in the perturbative chiral quark model (PCQM) with considering both the ground and excited states in the quark propagator. A Cornell-like potential is extracted in accordance with the predetermined ground state quark wave function, and the excited quark states are derived by solving the Dirac equation with the extracted PCQM potential numerically. The study reveals that the contributions of the excited quark states are considerably influential in the charge form factor and charge radius of neutron as expected, and the total results are significantly improved and increased by nearly four times by including the excited states in the quark propagator. The theoretical PCQM results are found, including the ground and excited quark propagators, in good agreement with the recent lattice QCD values at pion mass of about 130MeV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Geis et al., Phys. Rev. Lett. 101, 042501 (2008)

    ADS  Google Scholar 

  2. C. Patrignani et al., Chin. Phys. C 40, 100001 (2016)

    ADS  Google Scholar 

  3. V. Punjabi, C. Perdrisat, M. Jones, E. Brash, C. Carlson, Eur. Phys. J. A 51, 79 (2015)

    ADS  Google Scholar 

  4. C. Alexandrou et al., Phys. Rev. D 96, 034503 (2017)

    ADS  Google Scholar 

  5. A.W. Thomas, S. Théberge, G.A. Milker, Phys. Rev. D 24, 216 (1981)

    ADS  Google Scholar 

  6. A. Buchmann, E. Hernández, K. Yazaki, Phys. Lett. B 269, 35 (1991)

    ADS  Google Scholar 

  7. D.H. Lu, K. Tsushima, A.W. Thomas, A.G. Williams, Phys. Lett. B 441, 27 (1998)

    ADS  Google Scholar 

  8. D.H. Lu, A.W. Thomas, A.G. Williams, Phys. Rev. C 57, 2628 (1998)

    ADS  Google Scholar 

  9. F. Cardarelli, S. Simula, Phys. Lett. B 467, 1 (1999)

    ADS  Google Scholar 

  10. A. Tang, W. Wilcox, R. Lewis, Phys. Rev. D 68, 094503 (2003)

    ADS  Google Scholar 

  11. T. Fuchs, J. Gegelia, S. Scherer, J. Phys. G: Nucl. Part. Phys. 30, 1407 (2004)

    ADS  Google Scholar 

  12. M.R. Schindler, J. Gegelia, S. Scherer, Eur. Phys. J. A 26, 1 (2005)

    ADS  Google Scholar 

  13. A. Faessler, T. Gutsche, V.E. Lyubovitskij, K. Pumsa-ard, Phys. Rev. D 73, 114021 (2006)

    ADS  Google Scholar 

  14. A. Faessler, T. Gutsche, B.R. Holstein, V.E. Lyubovitskij, D. Nicmorus, K. Pumsa-ard, Phys. Rev. D 74, 074010 (2006)

    ADS  Google Scholar 

  15. A. Faessler, T. Gutsche, B.R. Holstein, M.A. Ivanov, J.G. Korner, V.E. Lyubovitskij, Phys. Rev. D 78, 094005 (2008)

    ADS  Google Scholar 

  16. L.Y. Glozman, D.O. Riska, Phys. Lett. B 459, 49 (1999)

    ADS  Google Scholar 

  17. J.A. Rinehimer, G.A. Miller, Phys. Rev. C 80, 025206 (2009)

    ADS  Google Scholar 

  18. G. Ramalho, K. Tsushima, Phys. Rev. D 84, 054014 (2011)

    ADS  Google Scholar 

  19. G. Ramalho, K. Tsushima, A.W. Thomas, J. Phys. G: Nucl. Part. Phys. 40, 015102 (2013)

    ADS  Google Scholar 

  20. P. Wang, D.B. Leinweber, A.W. Thomas, R.D. Young, Phys. Rev. D 79, 094001 (2009)

    ADS  Google Scholar 

  21. E. Shintani, K.I. Ishikawa, Y. Kuramashi, S. Sasaki, T. Yamazaki, Phys. Rev. D 99, 014510 (2019)

    ADS  Google Scholar 

  22. X.Y. Liu, K. Khosonthongkee, A. Limphirat, Y. Yan, J. Phys. G: Nucl. Part. Phys. 41, 055008 (2014)

    ADS  Google Scholar 

  23. X.Y. Liu, K. Khosonthongkee, A. Limphirat, P. Suebka, Y. Yan, Phys. Rev. D 91, 034022 (2015)

    ADS  Google Scholar 

  24. V.E. Lyubovitskij, T. Gutsche, A. Faessler, E.G. Drukarev, Phys. Rev. D 63, 054026 (2001)

    ADS  Google Scholar 

  25. V.E. Lyubovitskij, T. Gutsche, A. Faessler, Phys. Rev. C 64, 065203 (2001)

    ADS  Google Scholar 

  26. V.E. Lyubovitskij, T. Gutsche, A. Faessler, M.R. Vinh, Phys. Lett. B 520, 204 (2002)

    ADS  Google Scholar 

  27. V.E. Lyubovitskij, T. Gutsche, A. Faessler, R. Vinh Mau, Phys. Rev. C 65, 025202 (2002)

    ADS  Google Scholar 

  28. K. Pumsa-ard, V.E. Lyubovitskij, T. Gutsche, A. Faessler, S. Cheedket, Phys. Rev. C 68, 015205 (2003)

    ADS  Google Scholar 

  29. S. Cheedket, V.E. Lyubovitskij, T. Gutsche, A. Faessler, K. Pumsa-ard, Y. Yan, Eur. Phys. J. A 20, 317 (2004)

    ADS  Google Scholar 

  30. K. Khosonthongkee, V.E. Lyubovitskij, T. Gutsche, A. Faessler, K. Pumsa-ard, S. Cheedket, Y. Yan, J. Phys. G 30, 793 (2004)

    ADS  Google Scholar 

  31. Y. Dong, A. Faessler, T. Gutsche, J. Kuckei, V.E. Lyubovitskij, K. Pumsa-ard, P. Shen, J. Phys. G 32, 203 (2006)

    ADS  Google Scholar 

  32. C. Dib, A. Faessler, T. Gutsche, S. Kovalenko, J. Kuckei, V.E. Lyubovitskij, K. Pumsa-ard, J. Phys. G 32, 547 (2006)

    ADS  Google Scholar 

  33. A. Faessler, T. Gutsche, V.E. Lyubovitskij, C. Oonariya, J. Phys. G 35, 025005 (2008)

    ADS  Google Scholar 

  34. X.Y. Liu, Z.J. Liu, A. Limphirat, K. Khosonthongkee, Y. Yan, Ann. Phys. 388, 114 (2018)

    ADS  Google Scholar 

  35. T. Eden et al., Phys. Rev. C 50, R1749 (1994)

    ADS  Google Scholar 

  36. E.E.W. Bruins et al., Phys. Rev. Lett. 75, 21 (1995)

    ADS  Google Scholar 

  37. C. Herberg et al., Eur. Phys. J. A 5, 131 (1999)

    ADS  Google Scholar 

  38. M. Ostrick et al., Phys. Rev. Lett. 83, 276 (1999)

    ADS  Google Scholar 

  39. I. Passchier et al., Phys. Rev. Lett. 82, 4988 (1999)

    ADS  Google Scholar 

  40. J. Golak, G. Ziemer, H. Kamada, H. Witala, W. Glöckle, Phys. Rev. C 63, 034006 (2001)

    ADS  Google Scholar 

  41. J. Bermuth et al., Phys. Lett. B 564, 199 (2003)

    ADS  Google Scholar 

  42. R. Madey et al., Phys. Rev. Lett. 91, 122002 (2003)

    ADS  Google Scholar 

  43. G. Warren et al., Phys. Rev. Lett. 92, 042301 (2004)

    ADS  Google Scholar 

  44. D.I. Glazier et al., Eur. Phys. J. A 24, 101 (2005)

    ADS  Google Scholar 

  45. C. Alexandrou et al., Phys. Rev. D 100, 014509 (2019)

    ADS  MathSciNet  Google Scholar 

  46. E.M. Tursunov, S. Krewald, Phys. Rev. D 90, 074015 (2014)

    ADS  Google Scholar 

  47. Y.B. Dong, K. Shimizu, A. Faessler, A.J. Buchmann, Phys. Rev. C 60, 035203 (1999)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Y. Liu.

Additional information

Communicated by R. Alkofer

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All data generated during this study are contained in this published article.]

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X.Y., Limphirat, A., Xu, K. et al. Analysis of excited quark propagator effects on neutron charge form factor. Eur. Phys. J. A 55, 218 (2019). https://doi.org/10.1140/epja/i2019-12913-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2019-12913-1

Navigation