Skip to main content
Log in

A study of a relativistic quark-diquark model for the nucleon

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

We develop a specific quark-diquark constituent model for the study of the nucleon and its excited states. A relativistic kinetic energy operator is used for both the quark and the diquark. Interaction terms depending on the spin and angular momentum operators are introduced to describe in detail the mass spectrum. Different values of the parameters in the interaction operators are taken for the scalar and axial-vector diquark states. The tensor interaction is also considered in the present model. The baryon spectrum is calculated up to resonance masses of 2 GeV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gunnar S. Bali, Phys. Rep. 343, 1 (2001).

    Article  ADS  MATH  Google Scholar 

  2. For the HPQCD collaboration (C.T.H. Davies), 34th International Conference on High Energy Physics, Philadelphia, 2008, arXiv:0810.3309v1.

  3. J.J. Dudek, in Proceedings of the CHARM 2007 Workshop, Ithaca, NY, August 5-8, 2007, arXiv:0711.1600v1.

  4. M. Gell-Mann, Phys. Lett. 8, 124 (1964).

    Article  Google Scholar 

  5. M.M. Giannini, Rep. Prog. Phys. 54, 453 (1990).

    Article  ADS  Google Scholar 

  6. M.M. Giannini, E. Santopinto, A. Vassallo, Eur. Phys. J. A 12, 447 (2001).

    Article  ADS  Google Scholar 

  7. Eberhard Klempt, J.M. Richard, Rev. Mod. Phys. 82, 1095 (2010).

    Article  ADS  Google Scholar 

  8. V. Crede, W. Roberts, Rep. Prog. Phys. 76, 076301 (2013).

    Article  ADS  Google Scholar 

  9. I.G. Aznauryan et al., Int. J. Mod. Phys. E 22, 1330015 (2013).

    Article  ADS  Google Scholar 

  10. S. Capstick et al., Eur. Phys. J. A 35, 253 (2008).

    Article  ADS  Google Scholar 

  11. M. De Sanctis, D. Prosperi, Nuovo Cimento A 103, 1301 (1990).

    Article  ADS  Google Scholar 

  12. M. De Sanctis, P. Quintero, Eur. Phys. J. A 46, 213 (2010).

    Article  ADS  Google Scholar 

  13. M. Ferraris, M.M. Giannini, M. Pizzo, E. Santopinto, L. Tiator, Phys. Lett. B 364, 231 (1995).

    Article  ADS  Google Scholar 

  14. M. Aiello, M.M. Giannini, E. Santopinto, J. Phys. G 24, 753 (1998).

    Article  ADS  Google Scholar 

  15. E. Santopinto, F. Iachello, M.M. Giannini, Eur. Phys. J. A 1, 307 (1998).

    Article  ADS  Google Scholar 

  16. R. Bijker, F. Iachello, E. Santopinto, J. Phys. A 31, 9041 (1998).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. M. De Sanctis, E. Santopinto, M.M. Giannini, Eur. Phys. J. A 1, 187 (1998).

    ADS  Google Scholar 

  18. M. De Sanctis, E. Santopinto, M.M. Giannini, Eur. Phys. J. A 2, 403 (1998).

    Article  ADS  Google Scholar 

  19. M. De Sanctis, M.M. Giannini, L. Repetto, E. Santopinto, Phys. Rev. C 62, 025208 (2000).

    Article  ADS  Google Scholar 

  20. M. De Sanctis, M.M. Giannini, E. Santopinto, A. Vassallo, Eur. Phys. J. A 19, 81 (2004).

    Article  Google Scholar 

  21. M. De Sanctis, M.M. Giannini, E. Santopinto, A. Vassallo, Rev. Mex. Fís. S 50, 96 (2004).

    Google Scholar 

  22. M.M. Giannini, E. Santopinto, A. Vassallo, Eur. Phys. J. A 25, 241 (2005).

    Article  ADS  Google Scholar 

  23. M. De Sanctis, M.M. Giannini, E. Santopinto, A. Vassallo, Phys. Rev. C 76, 062201(R) (2007).

    Article  ADS  Google Scholar 

  24. E. Santopinto, M.M. Giannini, Phys. Rev. C 86, 065202 (2012).

    Article  ADS  Google Scholar 

  25. R. Bijker, F. Iachello, Phys. Rev. C 61, 067305 (2000).

    Article  ADS  Google Scholar 

  26. N.A. Törnqvist, P. Zenczykowski, Phys. Rev. D 29, 2139(R) (1984).

    Article  ADS  Google Scholar 

  27. P. Geiger, N. Isgur, Phys. Rev. Lett. 67, 1066 (1991).

    Article  ADS  Google Scholar 

  28. P. Geiger, N. Isgur, Phys. Rev. D 44, 799 (1991).

    Article  ADS  Google Scholar 

  29. R. Bijker, E. Santopinto, Rev. Mex. Fís. S 53, 6 (2008).

    Google Scholar 

  30. C. Adamuscin, E. Tomasi-Gustafsson, E. Santopinto, R. Bijker, Phys. Rev. C 78, 035201 (2008).

    Article  ADS  Google Scholar 

  31. R. Bijker, E. Santopinto, Phys. Rev. C 80, 065210 (2009).

    Article  ADS  Google Scholar 

  32. E. Santopinto, R. Bijker, Phys. Rev. C 82, 062202 (2010).

    Article  ADS  Google Scholar 

  33. R. Bijker, J. Ferretti, E. Santopinto, Phys. Rev. C 85, 035204 (2012).

    Article  ADS  Google Scholar 

  34. M. Ida, R. Kobayashi, Prog. Theor. Phys. 36, 846 (1966).

    Article  ADS  Google Scholar 

  35. D.B. Lichtenberg, L.J. Tassie, Phys. Rev. 155, 1601 (1967).

    Article  ADS  Google Scholar 

  36. D.B. Lichtenberg, L.J. Tassie, P.J. Keleman, Phys. Rev. 167, 1535 (1968).

    Article  ADS  Google Scholar 

  37. J. Carroll, D.B. Lichtenberg, J. Franklin, Phys. Rev. 174, 1681 (1968).

    Article  ADS  Google Scholar 

  38. M. Anselmino et al., Rev. Mod. Phys. 65, 1199 (1993).

    Article  ADS  Google Scholar 

  39. E. Santopinto, Phys. Rev. C 72, 022201 (2005).

    Article  ADS  Google Scholar 

  40. R. Babich et al., Phys. Rev. D 76, 074021 (2007).

    Article  ADS  Google Scholar 

  41. C.B. Compean, M. Kirchbach, Eur. Phys. J. A 33, 1 (2007).

    Article  ADS  Google Scholar 

  42. Yan-Ming Yu, Spectra of Free Diquark in the Bethe-Salpeter Approach, hep-ph/0602077 v1 (2006).

  43. J. Ferretti, A. Vassallo, E. Santopinto, Phys. Rev. C 83, 065204 (2011).

    Article  ADS  Google Scholar 

  44. D. Ebert, R.N. Faustov, V.O. Galkin, Phys. Rev. D 84, 014025 (2011).

    Article  ADS  Google Scholar 

  45. M. De Sanctis, J. Ferretti, E. Santopinto, A. Vassallo, Phys. Rev. C 84, 055201 (2011).

    Article  ADS  Google Scholar 

  46. E. Klempt, B.Ch. Metsch, Eur. Phys. J. A 48, 127 (2012).

    Article  ADS  Google Scholar 

  47. Tianbo Liu, Bo-Qiang Ma, Phys. Rev. C 89, 055202 (2014).

    Article  ADS  Google Scholar 

  48. C. Gutierrez, M. De Sanctis, Pramana J. Phys. 72, 451 (2009).

    Article  ADS  Google Scholar 

  49. M. De Sanctis, J. Ferretti, E. Santopinto, A. Vassallo, Relativistic quark-diquark model of baryons with a spin-isospin transition interaction, hep-ph/1410.0590 v1 (2014).

  50. G. Galatà, E. Santopinto, Phys. Rev. C 86, 045202 (2012).

    Article  ADS  Google Scholar 

  51. I.C. Cloët, G.A. Miller, Phys. Rev. C 86, 015208 (2012).

    Article  ADS  Google Scholar 

  52. V.M. Grichine, N.I. Starkov, N.P. Zotov, Eur. Phys. J. C 73, 2320 (2013).

    Article  ADS  Google Scholar 

  53. V.M. Grichine, Eur. Phys. J. Plus 129, 112 (2014).

    Article  Google Scholar 

  54. H. Basler, M. Buballa, Phys. Rev. D 81, 054033 (2010).

    Article  ADS  Google Scholar 

  55. H. Abuki, G. Baym, T. Hatsuda, N. Yamamoto, Phys. Rev. D 81, 125010 (2010).

    Article  ADS  Google Scholar 

  56. D. Ebert et al., Phys. Rev. D 76, 114015 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  57. D. Ebert et al., Eur. Phys. J. C 60, 273 (2009).

    Article  ADS  Google Scholar 

  58. E. Santopinto, G. Galatà, Phys. Rev. C 75, 045206 (2007).

    Article  ADS  Google Scholar 

  59. W. Heupet, Tetraquark bound state in a Bethe-Salpeter approach, arXiv:1206.5129v2.

  60. A. Majethiya, Spectroscopy and decay properties of Σ b , Λ b baryons in quark-diquark model (2011) arXiv:1102.4160v1.

  61. Smruti Patel, Manan Shah, P.C. Vinodkumar, Eur. Phys. J. A 50, 131 (2014).

    Article  ADS  Google Scholar 

  62. T. Friedmann, Eur. Phys. J. C 73, 2298 (2013).

    Article  ADS  Google Scholar 

  63. T. Friedmann, Eur. Phys. J. C 73, 2299 (2013).

    Article  ADS  Google Scholar 

  64. B. Bakamjian, L.H. Thomas, Phys. Rev. 92, 1300 (1953).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  65. W.H. Klink, Phys. Rev. C 58, 3617 (1998).

    Article  ADS  Google Scholar 

  66. R.F. Wagenbrunn, S. Boffi, W. Kink, W. Plessas, M. Radici, Phys. Lett. B 511, 33 (2001).

    Article  ADS  Google Scholar 

  67. T. Melde, L. Canton, W. Plessas, R.F. Wagenbrunn, Eur. Phys. J. A 25, 97 (2005).

    Article  Google Scholar 

  68. B.D. Keister, W.N. Polyzou, Adv. Nucl. Phys. 20, 225 (1991).

    Google Scholar 

  69. V.V. Kudryashov, V.I. Reshetnyak, Improved variational approach for the Cornell potential, arXiv:0911.4256v1 [math-ph] (2009).

  70. H. Chung, J. Lee, J. Kor. Phys. Soc. 52, 1151 (2008).

    Article  ADS  Google Scholar 

  71. J. Eiglsperger, Quarkonium Spectroscopy: Beyond One-Gluon Exchange, Diploma Thesis, Technische Universität München, Physik-Department, January 2007, arXiv:0707.1269v1.

  72. P. Gonzalez, Phys. Rev. D 80, 054010 (2009).

    Article  ADS  Google Scholar 

  73. M. Moshinsky, Y. Smirnov, The Harmonic Oscilator in Modern Physics, Instituto de Fisica, Universidad Nacional Autonoma de Mexico (1996).

  74. A.R. Edmonds, Angular Momentum in Quantum Mechanics, (Princeton University, 1957).

  75. S. Eidelman et al., Phys. Lett. B 592, 1 (2004).

    Article  ADS  Google Scholar 

  76. H.-C. Jean, D. Robson, A.G. Williams, Phys. Rev. D 50, 5873 (1994).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. De Sanctis.

Additional information

Communicated by S. Hands

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gutierrez, C., De Sanctis, M. A study of a relativistic quark-diquark model for the nucleon. Eur. Phys. J. A 50, 169 (2014). https://doi.org/10.1140/epja/i2014-14169-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2014-14169-7

Keywords

Navigation