Skip to main content
Log in

Systematic study of proton radioactivity of spherical proton emitters within various versions of proximity potential formalisms

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

In this work we present a systematic study of the proton radioactivity half-lives of spherical proton emitters within the Coulomb and proximity potential model. We investigate 28 different versions of the proximity potential formalisms developed for the description of proton radioactivity, \(\alpha\) decay and heavy particle radioactivity. It is found that 21 of them are not suitable to deal with the proton radioactivity, because the classical turning points \(r_{\mathrm{in}}\) cannot be obtained due to the fact that the depth of the total interaction potential between the emitted proton and the daughter nucleus is above the proton radioactivity energy. Among the other 7 versions of the proximity potential formalisms, it is Guo2013 which gives the lowest rms deviation in the description of the experimental half-lives of the known spherical proton emitters. We use this proximity potential formalism to predict the proton radioactivity half-lives of 13 spherical proton emitters, whose proton radioactivity is energetically allowed or observed but not yet quantified, within a factor of 3.71.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.P. Jackson, C.U. Cardinal, H.C. Evans et al., Phys. Lett. B 33, 281 (1970)

    Article  ADS  Google Scholar 

  2. A.A. Sonzogni, Nucl. Data Sheets 95, 1 (2002)

    Article  ADS  Google Scholar 

  3. M. Karny, K.P. Rykaczewski, R.K. Grzywacz et al., Phys. Lett. B 664, 52 (2008)

    Article  ADS  Google Scholar 

  4. A.T. Kruppa, W. Nazarewicz, Phys. Rev. C 69, 054311 (2004)

    Article  ADS  Google Scholar 

  5. L.S. Ferreira, M.C. Lopes, E. Maglione, Prog. Part. Nucl. Phys. 59, 418 (2007)

    Article  ADS  Google Scholar 

  6. J.M. Dong, H.F. Zhang, G. Royer, Phys. Rev. C 79, 054330 (2009)

    Article  ADS  Google Scholar 

  7. J.M. Dong, H.F. Zhang, W. Zuo et al., Chin. Phys. C 34, 182 (2010)

    Article  ADS  Google Scholar 

  8. H.F. Zhang, J.M. Dong, Y.Z. Wang et al., Chin. Phys. Lett. 26, 072301 (2009)

    Article  ADS  Google Scholar 

  9. M. Bhattacharya, G. Gangopadhyay, Phys. Lett. B 651, 263 (2007)

    Article  ADS  Google Scholar 

  10. Y.B. Qian, Z.Z. Ren, D.D. Ni, Chin. Phys. Lett. 27, 072301 (2010)

    Article  ADS  Google Scholar 

  11. D.N. Basu, P. Roy Chowdhury, C. Samanta, Phys. Rev. C 72, 051601(R) (2005)

    Article  ADS  Google Scholar 

  12. M. Balasubramaniam, N. Arunachalam, Phys. Rev. C 71, 014603 (2005)

    Article  ADS  Google Scholar 

  13. Y. Qian, Z. Ren, Eur. Phys. J. A 52, 68 (2016)

    Article  ADS  Google Scholar 

  14. Y.B. Qian, Z.Z. Ren, D.D. Ni et al., Chin. Phys. Lett. 27, 112301 (2010)

    Article  ADS  Google Scholar 

  15. A. Zdeb, M. Warda, C.M. Petrache et al., Eur. Phys. J. A 52, 323 (2016)

    Article  ADS  Google Scholar 

  16. K.P. Santhosh, I. Sukumaran, Phys. Rev. C 96, 034619 (2017)

    Article  ADS  Google Scholar 

  17. Q. Zhao, J.M. Dong, J.L. Song et al., Phys. Rev. C 90, 054326 (2014)

    Article  ADS  Google Scholar 

  18. Z.X. Zhang, J.M. Dong, Chin. Phys. C 42, 014104 (2018)

    Article  ADS  Google Scholar 

  19. S. Åberg, P.B. Semmes, W. Nazarewicz, Phys. Rev. C 56, 1762 (1997)

    Article  ADS  Google Scholar 

  20. B. Buck, A.C. Merchant, S.M. Perez, Phys. Rev. C 45, 1688 (1992)

    Article  ADS  Google Scholar 

  21. E. Maglione, L.S. Ferreira, R.J. Liotta, Phys. Rev. Lett. 81, 538 (1998)

    Article  ADS  Google Scholar 

  22. E. Maglione, L.S. Ferreira, R.J. Liotta, Phys. Rev. C 59, R589(R) (1999)

    Article  ADS  Google Scholar 

  23. J. Blocki, J. Randrup, W.J. Świaţecki et al., Ann. Phys. (N.Y.) 105, 427 (1977)

    Article  ADS  Google Scholar 

  24. J. Blocki, W.J. Świaţecki, Ann. Phys. (N.Y.) 132, 53 (1981)

    Article  ADS  Google Scholar 

  25. I. Dutt, R.K. Puri, Phys. Rev. C 81, 044615 (2010)

    Article  ADS  Google Scholar 

  26. W.D. Myers, W.J. Świaţecki, Nucl. Phys. 81, 1 (1966)

    Article  Google Scholar 

  27. P. Möller, J.R. Nix, Nucl. Phys. A 272, 502 (1976)

    Article  ADS  Google Scholar 

  28. H.J. Krappe, J.R. Nix, A.J. Sierk, Phys. Rev. C 20, 992 (1979)

    Article  ADS  Google Scholar 

  29. P. Möller, J.R. Nix, Nucl. Phys. A 361, 117 (1981)

    Article  ADS  Google Scholar 

  30. G. Royer, B. Remaud, J. Phys. G: Nucl. Part. Phys. 10, 1057 (1984)

    Article  ADS  Google Scholar 

  31. P. Möller, J.R. Nix, At. Data Nucl. Data Tables 39, 213 (1988)

    Article  ADS  Google Scholar 

  32. P. Möller, J.R. Nix, W.D. Myers et al., At. Data Nucl. Data Tables 59, 185 (1995)

    Article  ADS  Google Scholar 

  33. K. Pomorski, J. Dudek, Phys. Rev. C 67, 044316 (2003)

    Article  ADS  Google Scholar 

  34. R. Bass, Phys. Lett. B 47, 139 (1973)

    Article  ADS  Google Scholar 

  35. R. Bass, Nucl. Phys. A 231, 45 (1974)

    Article  ADS  Google Scholar 

  36. R. Bass, Phys. Rev. Lett. 39, 265 (1977)

    Article  ADS  Google Scholar 

  37. W. Reisdorf, J. Phys. G: Nucl. Part. Phys. 20, 1297 (1994)

    Article  ADS  Google Scholar 

  38. P.R. Christensen, A. Winther, Phys. Lett. B 65, 19 (1976)

    Article  ADS  Google Scholar 

  39. A. Winther, Nucl. Phys. A 594, 203 (1995)

    Article  ADS  Google Scholar 

  40. H. Ngo, Ch. Ngo, Nucl. Phys. A 348, 140 (1980)

    Article  ADS  Google Scholar 

  41. V.Y. Denisov, Phys. Lett. B 526, 315 (2002)

    Article  ADS  Google Scholar 

  42. C.L. Guo, G.L. Zhang, X.Y. Le, Nucl. Phys. A 897, 54 (2013)

    Article  ADS  Google Scholar 

  43. W.D. Myers, W.J. Świaţecki, Phys. Rev. C 62, 044610 (2000)

    Article  ADS  Google Scholar 

  44. I. Dutt, R. Bansal, Chin. Phys. Lett. 27, 112402 (2010)

    Article  Google Scholar 

  45. I. Dutt, Pramana 76, 921 (2011)

    Article  ADS  Google Scholar 

  46. Y.J. Yao, G.L. Zhang, W.W. Qu et al., Eur. Phys. J. A 51, 122 (2015)

    Article  ADS  Google Scholar 

  47. O.N. Ghodsi, A. Daei-Ataollah, Phys. Rev. C 93, 024612 (2016)

    Article  ADS  Google Scholar 

  48. K.P. Santhosh, I. Sukumaran, Eur. Phys. J. Plus 132, 431 (2017)

    Article  Google Scholar 

  49. K.P. Santhosh, V.B. Jose et al., Nucl. Phys. A 817, 35 (2009)

    Article  ADS  Google Scholar 

  50. K.P. Santhosh, V.B. Jose, Nucl. Phys. A 922, 191 (2014)

    Article  ADS  Google Scholar 

  51. K.P. Santhosh, S. Krishnan, B. Priyanka, J. Phys. G: Nucl. Part. Phys. 41, 105108 (2014)

    Article  ADS  Google Scholar 

  52. K.P. Santhosh, S. Krishnan, B. Priyanka, Phys. Rev. C 91, 044603 (2015)

    Article  ADS  Google Scholar 

  53. J.G. Deng, J.C. Zhao, J.L. Chen et al., Chin. Phys. C 42, 044102 (2018)

    Article  ADS  Google Scholar 

  54. J.G. Deng, J.C. Zhao, P.C. Chu et al., Phys. Rev. C 97, 044322 (2018)

    Article  ADS  Google Scholar 

  55. K.P. Santhosh, B. Priyanka, Phys. Rev. C 87, 064611 (2013)

    Article  ADS  Google Scholar 

  56. D.N. Poenaru, W. Greiner, M. Ivascu et al., Z. Phys. A 325, 435 (1986)

    ADS  Google Scholar 

  57. J.J. Morehead, J. Math. Phys. 36, 5431 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  58. G. Royer, R. Rousseau, Eur. Phys. J. A 42, 541 (2009)

    Article  ADS  Google Scholar 

  59. B. Nerlo-Pomorska, K. Pomorski, Z. Phys. A 348, 169 (1994)

    Article  ADS  Google Scholar 

  60. I. Dutt, R.K. Puri, Phys. Rev. C 81, 064608 (2010)

    Article  ADS  Google Scholar 

  61. G. Audi, F. Kondev, M. Wang et al., Chin. Phys. C 41, 030001 (2017)

    Article  ADS  Google Scholar 

  62. W.J. Huang, G. Audi, M. Wang et al., Chin. Phys. C 41, 030002 (2017)

    Article  ADS  Google Scholar 

  63. M. Wang, G. Audi, F. Kondev et al., Chin. Phys. C 41, 030003 (2017)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Hua Li.

Additional information

Communicated by P. Capel

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All data generated during this study are contained in this published article.]

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, JG., Li, XH., Chen, JL. et al. Systematic study of proton radioactivity of spherical proton emitters within various versions of proximity potential formalisms. Eur. Phys. J. A 55, 58 (2019). https://doi.org/10.1140/epja/i2019-12728-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2019-12728-0

Navigation