Skip to main content
Log in

Investigation of high spin states in 133Cs

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

High spin states in 133Cs nucleus have been studied with the reaction 130Te (7Li, 4n) at a beam energy of 38 MeV. The level scheme has been expanded with spin up to 31/2 \(\hbar\). Compared with a recent paper, ground state band and other two collective band structures at lower spin states have been confirmed. Another collective band structure at higher spin states as well as some levels and transitions are updated. Compared with the experimental data, large-scale shell model and tilted axis cranking model calculations have been carried out. The results show that the band-head configuration of yrast band based on \(7/2^{+}\) ground state and the side band built on the \(5/2^{+}\) state are a pair of pseudospin partner states with \(\pi \tilde{f}_{7/2,5/2}\). The negative parity band based on 1071.5 keV level originates from \(\pi h_{11/2}\) orbital. Another band built on 2642.9 keV level at high spin states has been proposed with oblate deformation. Other characteristics for these bands were also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Q. Xu et al., Phys. Rev. C 78, 064301 (2008)

    Article  ADS  Google Scholar 

  2. C. Liu et al., Int. J. Mod. Phys. E 20, 2351 (2011)

    Article  ADS  Google Scholar 

  3. S.Y. Wang et al., Phys. Rev. C 86, 064302 (2012)

    Article  ADS  Google Scholar 

  4. S.Y. Wang et al., Phys. Rev. C 82, 057303 (2010)

    Article  ADS  Google Scholar 

  5. S.Y. Wang et al., Phys. Rev. C 75, 037302 (2007)

    Article  ADS  Google Scholar 

  6. C.M. Petrache et al., Phys. Rev. C 65, 054324 (2002)

    Article  ADS  Google Scholar 

  7. D.J. Hartly et al., Phys. Rev. C 57, 2944 (1998)

    Article  ADS  Google Scholar 

  8. H. Carlsson et al., Nucl. Phys. A 592, 89 (1995)

    Article  ADS  Google Scholar 

  9. P. Kemnitz et al., Nucl. Phys. A 209, 271 (1973)

    Article  ADS  Google Scholar 

  10. M.A. Cardona et al., Phys. Rev. C 55, 144 (1997)

    Article  ADS  Google Scholar 

  11. W. Hua et al., Phys. Rev. C 80, 034303 (2009)

    Article  ADS  Google Scholar 

  12. C. Schuck et al., Phys. Rev. C 56, R1667 (1997)

    Article  ADS  Google Scholar 

  13. J.Y. Guo et al., Phys. Rev. C 85, R021302 (2012)

    Article  ADS  Google Scholar 

  14. I.G. Darby et al., Phys. Rev. Lett. 105, 162502 (2010)

    Article  ADS  Google Scholar 

  15. C. Qi et al., Phys. Rev. C 86, 044323 (2012)

    Article  ADS  Google Scholar 

  16. U. Garg et al., Phys. Rev. C 19, 207 (1979)

    Article  ADS  Google Scholar 

  17. E.S. Paul et al., Phys. Rev. Lett. 58, 984 (1987)

    Article  ADS  Google Scholar 

  18. E.S. Paul et al., Phys. Rev. C 40, 1255 (1989)

    Article  ADS  Google Scholar 

  19. S.J. Zhu et al., Phys. Rev. C 62, 044310 (2000)

    Article  ADS  Google Scholar 

  20. H.J. Li et al., Eur. Phys. J. A 51, 5 (2015)

    Article  ADS  Google Scholar 

  21. E.Y. Yeoh et al., Phys. Rev. C 85, 064322 (2012)

    Article  ADS  Google Scholar 

  22. Q. Xu et al., Phys. Rev. C 78, 034310 (2008)

    Article  ADS  Google Scholar 

  23. S. Sihotra et al., Phys. Rev. C 79, 044317 (2009)

    Article  ADS  Google Scholar 

  24. S. Sihotra et al., Phys. Rev. C 78, 034313 (2008)

    Article  ADS  Google Scholar 

  25. R. Kumar et al., Eur. Phys. J. A 24, 13 (2005)

    Article  ADS  Google Scholar 

  26. S. Biswas et al., Phys. Rev. C 95, 064320 (2017)

    Article  ADS  Google Scholar 

  27. D.C. Radford, Nucl. Instrum. Methods Phys. Res. Sect. A 361, 297 (1995)

    Article  ADS  Google Scholar 

  28. J.A. Grau et al., Phys. Rev. Lett. 32, 677 (1974)

    Article  ADS  Google Scholar 

  29. G. Gangopadhyay et al., Eur. Phys. J. A 24, 173 (2005)

    Article  ADS  Google Scholar 

  30. B.A. Brown et al., Phys. Rev. C 71, 044317 (2005)

    Article  ADS  Google Scholar 

  31. A. Kerek et al., Nucl. Phys. A 172, 603 (1971)

    Article  ADS  Google Scholar 

  32. L.F. Jiao et al., Phys. Rev. C 90, 024306 (2014)

    Article  ADS  Google Scholar 

  33. S. Frauendorf, Nucl. Phys. A 557, 259 (1993)

    Article  ADS  Google Scholar 

  34. S. Frauendorf, Nucl. Phys. A 677, 115 (2000)

    Article  ADS  Google Scholar 

  35. S. Frauendorf, Rev. Mod. Phys. 73, 463 (2001)

    Article  ADS  Google Scholar 

  36. P. Möller et al., At. Data Nucl. Data Tables 66, 131 (1997)

    Article  ADS  Google Scholar 

  37. P. Luo et al., High Energy Phys. Nucl. Phys. 28, 495 (2004) in Chinese

    ADS  Google Scholar 

  38. S. Juutinen et al., Phys. Rev. C 52, 2946 (1995)

    Article  ADS  Google Scholar 

  39. S.J. Zhu et al., High Energy Phys. Nucl. Phys. 29, 130 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q. Xu.

Additional information

Communicated by A. Gade

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Q., Xiao, Z.G., Zhu, S.J. et al. Investigation of high spin states in 133Cs. Eur. Phys. J. A 54, 83 (2018). https://doi.org/10.1140/epja/i2018-12520-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2018-12520-8

Navigation