Skip to main content
Log in

High spin states in 63Cu

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

High-spin states in 63Cu were investigated through in-beam \(\gamma\)-ray spectroscopic techniques using the 52Cr(18O,\(\alpha\)p2n) fusion-evaporation reaction at a beam energy of 72.5 MeV. The \(\gamma\)-rays emitted by the excited nucleus were recorded in the coincidence mode using fourteen Compton suppressed Ge clover detectors of the Indian National Gamma-ray Array (INGA). Based on the \(\gamma\)-\(\gamma\) coincidence data, twenty-one new \(\gamma\)-ray transitions have been observed and placed --thereby extending the level scheme of 63Cu up to spin \(25/2\hbar\) and excitation energy \(\sim 8.36\) MeV. Shell model calculations are performed in the \(f_{5/2}pg_{9/2}\) model space with a 56Ni core using two effective interactions, viz. JUN45 and jj44b to interpret the observed excited states of this nucleus. A reasonable agreement is found between the experimental finding and the shell-model calculations --which implies that the excitations within the \(f_{5/2}p_{3/2}p_{1/2}\) orbitals are more dominant in defining the observed level structure than the excitation across the magic shell gap \(N = Z = 28\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.E. Svensson et al., Phys. Rev. Lett. 79, 1233 (1997)

    Article  ADS  Google Scholar 

  2. C.E. Svensson et al., Phys. Rev. Lett. 80, 2558 (1998)

    Article  ADS  Google Scholar 

  3. C.E. Svensson et al., Phys. Rev. Lett. 82, 3400 (1999)

    Article  ADS  Google Scholar 

  4. A. Galindo-Uribarria et al., Phys. Lett. B 422, 45 (1998)

    Article  ADS  Google Scholar 

  5. C.-H. Yu et al., Phys. Rev. C 60, 031305(R) (1999)

    Article  ADS  Google Scholar 

  6. D. Karlgren et al., Phys. Rev. C 69, 034330 (2004)

    Article  ADS  Google Scholar 

  7. L.-L. Andersson et al., Eur. Phys. J. A 30, 381 (2006)

    Article  ADS  Google Scholar 

  8. L.-L. Andersson et al., Phys. Rev. C 79, 024312 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  9. J. Gellanki et al., Phys. Rev. C 86, 034304 (2012)

    Article  ADS  Google Scholar 

  10. D. Rudolph et al., Phys. Rev. Lett. 80, 3018 (1998)

    Article  ADS  Google Scholar 

  11. C. Andreoiu et al., Phys. Rev. C 62, 051301(R) (2000)

    Article  ADS  Google Scholar 

  12. D. Rudolph et al., Eur. Phys. J. A 14, 137 (2002)

    Article  ADS  Google Scholar 

  13. C. Andreoiu et al., Eur. Phys. J. A 14, 317 (2002)

    Article  ADS  Google Scholar 

  14. C. Andreoiu et al., Phys. Rev. Lett. 91, 232502 (2003)

    Article  ADS  Google Scholar 

  15. L.-L. Andersson et al., Eur. Phys. J. A 36, 251 (2008)

    Article  ADS  Google Scholar 

  16. D. Rudolph et al., Phys. Rev. Lett. 82, 3763 (1999)

    Article  ADS  Google Scholar 

  17. D. Rudolph et al., Phys. Rev. Lett. 86, 1450 (2001)

    Article  ADS  Google Scholar 

  18. C.-H. Yu et al., Phys. Rev. C 65, 061302(R) (2002)

    Article  ADS  Google Scholar 

  19. D. Rudolph et al., Phys. Rev. Lett. 96, 092501 (2006)

    Article  ADS  Google Scholar 

  20. E.K. Johansson et al., Phys. Rev. C 77, 064316 (2008)

    Article  ADS  Google Scholar 

  21. E.K. Johansson et al., Phys. Rev. C 80, 014321 (2009)

    Article  ADS  Google Scholar 

  22. M. Albers et al., Phys. Rev. C 88, 054314 (2013)

    Article  ADS  Google Scholar 

  23. M. Albers et al., Phys. Rev. C 94, 034301 (2016)

    Article  ADS  Google Scholar 

  24. D.A. Torres et al., Phys. Rev. C 78, 054318 (2008)

    Article  ADS  Google Scholar 

  25. R.M. Britton, D.L. Watson, Nucl. Phys. A 272, 91 (1976)

    Article  ADS  Google Scholar 

  26. B. Zeidman, J. Nolen, Phys. Rev. C 18, 2122 (1978)

    Article  ADS  Google Scholar 

  27. P. Roussel et al., Nucl. Phys. A 306, 487 (1970)

    Google Scholar 

  28. A.G. Blair, Phys. Rev. 140, B648 (1965)

    Article  ADS  Google Scholar 

  29. K.T. Flanagan et al., Phys. Rev. Lett. 103, 142501 (2009)

    Article  ADS  Google Scholar 

  30. C.J. Chiara et al., Phys. Rev. C 85, 024309 (2012)

    Article  ADS  Google Scholar 

  31. C.R. Nita et al., Phys. Rev. C 89, 064314 (2014)

    Article  ADS  Google Scholar 

  32. B. Erjun, J. Hunde, Nucl. Data Sheets 92, 147 (2001)

    Article  ADS  Google Scholar 

  33. ENSDF Database, https://www.nndc.bnl.gov/endf

  34. M.M. King, Nucl. Data Sheets 64, 815 (1991)

    Article  ADS  Google Scholar 

  35. A.A.C. Klaasse, P.F.A. Goudsmit, Z. Phys. 266, 75 (1974)

    Article  ADS  Google Scholar 

  36. C.G. Ryan et al., Nucl. Phys. A 342, 373 (1980)

    Article  ADS  Google Scholar 

  37. R. Dayras et al., Nucl. Phys. A 257, 118 (1976)

    Article  ADS  Google Scholar 

  38. J.K. Dickens, Nucl. Phys. A 401, 189 (1983)

    Article  ADS  Google Scholar 

  39. Tsan Ung Chan et al., Nucl. Phys. A 348, 179 (1980)

    Article  ADS  Google Scholar 

  40. O.M. Mustafa et al., J. Phys. G: Nucl. Phys. 5, 1283 (1979)

    Article  ADS  Google Scholar 

  41. K.P. Singh et al., Phys. Rev. C 58, 1980 (1998)

    Article  ADS  Google Scholar 

  42. B. Mukherjee et al., Pramana J. Phys. 55, L471 (2000)

    Article  ADS  Google Scholar 

  43. D. Kanjilal et al., Nucl. Instrum. Methods Phys. Res. Sect., A 328, 97 (1993)

    Article  ADS  Google Scholar 

  44. S. Rai, in Proceedings of the 60th DAE-BRNS Symposium on Nuclear Physics (Department of Atomic Energy, Government of India, 2015) p. 944

  45. S. Muralithar et al., Nucl. Instrum. Methods Phys. Res., Sect. A 622, 281 (2010)

    Article  ADS  Google Scholar 

  46. B.P. Ajith Kumar, in Proceedings of the 44th DAE-BRNS Symposium on Nuclear Physics (Department of Atomic Energy, Government of India, 2001) p. 390

  47. D.C. Radford, Nucl. Instrum. Methods Phys. Res., Sect. A 361, 290 (1995)

    Article  ADS  Google Scholar 

  48. R.K. Bhowmik, in Proceedings of the 44th DAE-BRNS Symposium on Nuclear Physics (Department of Atomic Energy, Government of India, 2001) p. 422

  49. K.S. Krane et al., Nucl. Data Tables 11, 351 (1973)

    Article  ADS  Google Scholar 

  50. G. Duchene et al., Nucl. Instrum. Methods Phys. Res., Sect. A 432, 90 (1999)

    Article  ADS  Google Scholar 

  51. K. Starosta et al., Nucl. Instrum. Methods Phys. Res., Sect. A 423, 16 (1999)

    Article  ADS  Google Scholar 

  52. S. Chakraborty et al., Braz. J. Phys. 47, 406 (2017)

    Article  ADS  Google Scholar 

  53. R. Palit et al., Pramana J. Phys. 54, 347 (2000)

    Article  ADS  Google Scholar 

  54. V.K. Thankappan, W.W. True, Phys. Rev. 137, B793 (1965)

    Article  ADS  Google Scholar 

  55. T. Ishii et al., Phys. Rev. Lett. 84, 39 (2000)

    Article  ADS  Google Scholar 

  56. S.S.M. Wong, Nucl. Phys. A 159, 235 (1970)

    Article  ADS  Google Scholar 

  57. S. Rai et al., Int. J. Mod. Phys. E 25, 1650099 (2016)

    Article  ADS  Google Scholar 

  58. M. Honma et al., Phys. Rev. C 80, 064323 (2009)

    Article  ADS  Google Scholar 

  59. B.A. Brown, A.F. Lisetskiy, private communication

  60. A. Brown, W.D.M. Rae, Nucl. Data Sheets 120, 115 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Mukherjee.

Additional information

Communicated by A. Gade

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rai, S., Mukherjee, B., Ghosh, U.S. et al. High spin states in 63Cu. Eur. Phys. J. A 54, 84 (2018). https://doi.org/10.1140/epja/i2018-12518-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2018-12518-2

Navigation